Sato Test Kuramı'nın Klasik Test Kuramı Ve Madde Tepki Kuramı İle Psikometrik Açıdan Karşılaştırılması
View/ Open
Date
2019-01-21Author
Çüm, Sait
xmlui.dri2xhtml.METS-1.0.item-emb
Acik erisimxmlui.mirage2.itemSummaryView.MetaData
Show full item recordAbstract
In this study, based on the answers given by the students who participated in the Student Achievement Determination Exam, it is aimed to determine the item characteristics of the mathematics and Turkish sub-tests and student achievement scores with Sato Test Theory (STT), Classical Test Theory (CTT) and Item Response Theory (IRT) and to compare the obtained findings. The research was conducted on 15461 people, 8th-grade students. After the analyzes performed, it has achieved a solid posture that the STT indices examined are statistically consistent even in small samples. When the harmony between the different samples of the STT classifications giving information about the functioning of the items is examined, it was determined that nearly all of the Turkish test items were classified with high compliance percentages among 100 and 200 person samples, and all of them were classified with high compliance percentages among 600 person samples. Classification for Turkish test items has reached a result that has a more stable stance than mathematical test items. At the point of determining the individual and items properties, it is seen that the STT has similar results with other theories and very close results with the CTT and IRT were found especially at the point of identifying the problematic items. The results of this research, it supports the claim that the STT can be evaluated as an alternative test theory, which is psychometric consistent in itself and allows valid and reliable measurements to be made with estimates that do not contradict other test theories.
xmlui.mirage2.itemSummaryView.Collections
xmlui.dri2xhtml.METS-1.0.item-citation
Acar, T. (2006). Sato uyarı indeksleri ile madde ve başarı analizleri. http://www.academia.edu/11390990/Sato_Uyarı_İndeksleri_ile_Madde_ve_Başarı_Analizleri adresinden erişilmiştir. An, X., Yung, Y. F. (2014). Item response theory: What it is and how you can use the irt procedure to apply it. https://support.sas.com/resources/papers/proceedings14/SAS364-2014.pdf adresinden erişilmiştir. Atılgan, H., Kan, A. ve Doğan, N. (2009). Eğitimde Ölçme ve Değerlendirme. Ankara: Anı Yayıncılık. Baker, F.B. (2001). The basics of item response theory. MD: ERIC Clearinghouse on Assessment and Evaluation. Baykul, Y. (2000). Eğitimde ve psikolojide ölçme: Klasik test teorisi ve uygulaması. Ankara: ÖSYM Yayınları. Bayrak, F. ve Yurdugül, H. (2016). Web-tabanlı öz-değerlendirme sisteminde öğrenci uyarı indeksini temel alan öğrenme analitiği modülünün tasarlanması. Eğitim Teknolojisi Kuram ve Uygulama, 6(2), 85-99. Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In Lord, F.M. & Novick, M.R. (Eds.), Statistical Theories of Mental Test Scores. MA: Addison–Wesley. Coaley K. (2009). Psychological assessment and psychometrics. California: Sage Publications. Coughlin, K.B. (2013).An analysis of factor extraction strategies: A study of the relative strenghts of principal axis, ordinary least squares and maximum likelihood factor extraction methods in research contexts(Yayımlanmamış doktora tezi). University of South Florida, Tampa, FL. Courville, T. G. (2004). An empirical comparison of item response theory and classical test theory item/response statistics. Unpublished Doctoral Dissertation. A & M University, Texas. Crocker, L. ve Algina J. (1986). Introduction to classical and modern test theory. Orlando: Harcourt Brace Jovanovich Inc. Çelen, Ü. veAybek, E.C. (2013). Öğrenci başarısının öğretmen yapımı bir testle klasik test kuramı ve madde tepki kuramı yöntemleriyle elde edilen puanlara göre karşılaştırılması. Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi, 4(2), 64-75 Çüm, S., Demir, E.K. ve Şahin, M.D. (2018). Sato test kuramı ile yapılan sınıflamalara yönelik öğretmen görüşlerinin incelenmesi. Anadolu Journal of Educational Sciences International, 8(1), 171-194. Çüm, S., Gelbal, S. ve Tsai, C.P. (2016). Sato test kuramı yöntemleriyle farklı örneklemlerden elde edilen madde parametrelerinin tutarlılığının incelenmesi. Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi, 7(1), 170-181. de Ayala, R. J. (2009). The theory and practice of item response theory. New York: The Guilford Press. DeMars, C. (2016). Madde tepki kuramı. Hülya Kelecioğlu (Çev. Ed.). Ankara: Nobel. DeVellis, R.F. (2014). Ölçek geliştirme: Kuram ve uygulamalar. Tarık Totan (Çev. Ed.). Ankara: Nobel. Doğan, N. ve Tezbaşaran, A.A. (2003). Klasik test kuramı ve örtük özellikler kuramının örneklemler bağlamında karşılaştırılması. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 25, 58-67. EARGED (Eğitimi Araştırma Geliştirme Dairesi) (Tarihsiz). ÖBBS tanıtımı. http://yegitek.meb.gov.tr/earged/arasayfa.php?g=77 adresinden erişilmiştir. Ebel, R.L. ve Frisbie D.A. (1991). Essentials of educational measurement. New Delhi: Prentice-Hall Inc. Embretson, S. E. ve Reise, S. P. (2000). Item response theory for psychologists. NJ: Lawrence Erlbaum Associates, Inc. Erkuş, A. (2003). Psikometri üzerine yazılar. Ankara: Türk Psikologlar Derneği Yayınları. Fabrigar, L. R.,Wegener,D. T., MacCallum, R. C., ve Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272-299. Fan, X. (1998). Item response theory and classical test theory: An empirical comparison of their item/response statistics, Educational and Psychological Measurement, 58(3), 357-381. Ferrando, P. J. ve Chico, E. (2007). The external validity of scores based on the two-parameter logistic model: Some comparisons between IRT and CTT. Psicologica, 28, 237-257. Field, A. (2009). Discovering statistics using SPSS. London: Sage Publications Ltd. Fulcher, G. ve Davidson, F. (2007). Language testing and assessment: An advanced resource book. New York: Routledge. Hambleton, R. K. ve Swaminathan, H.(1985). Item response theory: Principles and applications, New York: Springer. Hambleton, R. K., Swaminathan, H., ve Rogers, H. (1991). Fundamentalsof item response theory. CA: Sage. Hayton, J.C., Allen, D.G. ve Scarpello, V. (2004). Factor retention decision in exploratoy factor analysis: A tutorial on parallel analysis. Organizational Research Methods, 7(2), 191-205. Henning, G. (1987). A guide to language testing: Development, evaluation, research. MA: Newbury House. Henson, R.K. ve Roberts, J.K. (2006). Use of exploratory factor analysis in published research: common errors and some comment on improved practice. Educational and Psychological Measurement, 66, 393-416. Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2),179-85 Hulin, C. L., Lissak, R. I., ve Drasgow, F. (1982). Recovery of two and three-parameter logistic item characteristic curves: A Monte Carlo study. Applied Psychological Measurement, 6, 249-260. Kiany, G.R. ve Jalali, S. (2009). Theoretical and practical comparison of classical test theory and item response theory. International Journal of Active Learning, 12(1), 167-197. Lin, Y.H., ve Chen, S.M. (2006). The investigation of S-P chart analysis on the test evaluations of equality axiom concepts for sixth graders. Proceedings of the 2nd International Conference on Educational Technologies, Romania, Bucharest. Lin, Y.H., ve Yih, J.M. (2015). Application of IIRS in mathematics instruction to promote pupils decimal concept. The International Conference on Language, Education and Psychology, Taiwan. Lord, F. M., ve Novick, M. R. (1968). Statistical theories of mental test scores. MA: Addison-Welsley Publishing Company. Lord, F. ve Novick R.M. (1968). Statistical theories of mental test scores. New York: Addison Wesley Publishing Company. Lord, F.M. (1980). Applications of item response theory to practical testing problems. NJ: Lawrence Erlbaum Associates. MacDonald, P. ve Paunonen, S. (2002). A Monte Carlo comparison of item and person statistics based on item response theory versus classical test theory. Educational and Psychological Measurement, 62, 921-943. McArthur, D.L. (1983). Analysis of test score patterns: The student-problem (s-p) technique (Report no: 218). Los Angles: Center for the Study of Evaluation, University of California. Nagai, M. (2010). Handouts of Graduate Institute of Educational Measurement and Statistic at NTCU, Taiwan. Nartgün, Z. (2002). Aynı Tutumu Ölçmeye Yönelik Likert Tipi Ölçek ile Metrik Ölçeğin Madde ve Ölçek Özelliklerinin Klasik Test Kuramı ve Örtük Özellikler Kuramına Göre incelenmesi (Yayımlanmamış doktora tezi). Hacettepe Üniversitesi Sosyal Bilimler Enstitüsü, Ankara. Pham, D.H., Sheu, T.W., ve Nagai, M. (2015). PCSP 1.0 software for partial credit S-P chart analysis. International Journal of Hybrid Information Technology. 8(6), 309-322. Ree, M. J., ve Jensen, H. E. (1983). Effects of sample size on linear equating of item characteristic curve parameters: Latent trait test theory and computerized adaptive testing. New York: Academic Press. Sato, T. (1984). The state of art on S-P analysis activities in Japan. Tokyo: NEC Corp. Sheu, T. W., Nguyen, P. T., Nguyen, P. H., Pham, D. H., Tsai, P. C., ve Nagai, M. (2014a). A MATLAB toolbox for misconceptions analysis based on S-P chart, grey relational analysis and ROC. Transactions on Machine Learning and Artificial Intelligence, 2, 72-85. Sheu, T.W., Nguyen, P.T., Pham, D.H., Tsai, C.P., Nguyen, P. H. ve Nagai, M. (2014d). A new proposal for applying rasch gsp method in assessment of educational testing. International Journal of Application or Innovation in Engineering & Management, 3(7), 152-163. Sheu, T.W., Nguyen, P.T., Tsai, C.P., Pham, D.H., Nguyen, P.H. ve Nagai, M. (2014b). Using grey student-problem chart in the evaluation of tests with large data sets. Education Practise and Innovation, 1(2), 2372-3106. Sheu, T.W., Pham, D.H., Nguyen, P.T., ve Nguyen, P.H. (2013). Amatlab toolbox for student-problem chart and grey student-problem chart and its application. International Journal of Kansei, 4(2), 75-86. Sheu, T.W., Pham, D.H., Tsai, C.P., Nguyen, P.T., Nguyen, P. H. ve Nagai, M. (2014c). Rasch GSP toolbox for assessing academic achievement. Journal of Software, 9(7), 1903-1913. Sheu, T.W., Tsai, C.P., Tzeng, J.W., Pham, D.H., Chiang, H.J., Chang, C.L. ve Nagai, M. (2013). An improved teaching strategies proposal based on student’s learning misconceptions.International Journal of Kansei Information, 4(1), 1-12 Spencer, G.S. (2004). The Strength of Multidimensional Item Response Theory in Exporing Consrtuct Space That is Multidimensional and Corralated. Unpublished doctoral dissertation, Brigam Young University. Stage, C. (2003). Classical test theory or item response theory: the Swedish experience (Report No. 42). Umeå: Department of Educational Measurement. Suen, H.K. (1990). Principles of test theories. Hillsdale, NJ: Lawrence Erlbaum Associates. Switzer, D. M. ve Connell, M. L. (1990). Practical applications of student response analysis, Educational Measurement: Issue andPractice, 9, 15-17. Tatsuoka, K. K. (1984). Caution indices based on item response theory. Psychometrika, 49(1), 95-110. Thompson, B. (1994). Guidelines for authors. Educational and Psychological Measurements Yearbook, 54, 837–847. Thompson, B. (2004). Exploratory and confirmatory factor analysis: understanding concepts and applications. Washington, DC: American Psychological Association. Thorndike, L. R. (1982). Applied psychometrics. Boston: Houghton Mifflin Co. Traub, R. ve Rowley, G.(1991). Understanding reliability. Educational Measurement: Issues and Practice, 8(1), 8-14. Tsai, C.P., Sheu, T.W., Tzeng, J.W.,Chen, H.J., Chiang, H.J. ve Nagai, M. (2014). Diagnose learning misconceptions based on rough sets. International Journal of Applied Mathematics and Statistics, 52(2), 63-75. Turgut, F. (1978). Test geliştirme teknikleri: Ders notları. Ankara: Hacettepe Üniversitesi Yayınları. van der Linden, W. J. ve Hambleton, R. K. (1997). Handbook of modern item response theory. New York: Springer. Wang, B.T., Sheu, T.W., ve Nagai, M. (2011). Evaluating the english-learning of engineering students using the grey S-P chart: a facebook case study in Taiwan. Global Journal of Engineering Education, 13(2), 51-56. Wang, C.H. ve Chen, C.P. (2013). Employing online S-P diagnostic table for qualitative comments on test results. The Electronic Journal of e-Learning, 11(3), 263-271. Wu, H. (1999). Software Based on S-P Chart Analysis and Its Applications. Proceedings of the National Science Council, 8, 102-107. Yu, M. N. (2011). Educational testing and assessment. Taiwan: Psychology Publisher. Zickar, M.J. ve Broadfoot, A. A. (2008). The partial revival of a dead horse? Comparing classical test theory and item response theory. In C.E. Lance ve R. J. Vandenberg (Eds.), Statistical and methodological myths and urban legends. New York: Routledge Academic. Zwick,W. R. ve Velicer,W. F. (1986). Factors influencing five rules for determining the number of components to retain. Psychological Bulletin, 99, 432-44.Related items
Showing items related by title, author, creator and subject.
-
Yarı Karışık Yapılı Çok Boyutlu Yapıların Tek Boyutlu Olarak Ele Alınması Durumunda Kestirilen Parametrelerin İncelenmesi
Göçer Şahin, Sakine (Eğitim Bilimleri Enstitüsü, 2016)This study investigates the errors resulted from unidimensional estimation of multidimensional semi-mixed structured tests. To this end, a research design was prepared to include various conditions such as test structure, ... -
Bilişsel Tanı Ve Çok Boyutlu Madde Tepki Kuramı Modellerinin Karşılıklı Uyumlarının İncelenmesi
Yakar, Levent (Eğitim Bilimleri Enstitüsü, 2017-09-01)In this study , interchangeable use of cognitive diagnosis models (CDM) and multidimensional item response theory (MIRT) models, which have common features, were investigated . T his study ... -
Tek Boyutlu ve Çok Boyutlu Aşamalı Tepki Modeline Göre Çok Boyutlu Yapıların İncelenmesi
Demir, Elif Kübra (Eğitim Bilimleri Enstitüsü, 2019)The aim of this study is to compare estimated item and ability parameters and the model-data fit indexes of multidimensional and polytomous item data based on unidimensional and multidimensional Graded Response Model (GRM). ...