Özet
Protein misfolding or unfolding leads to the formation of aggregate structures as a result of their accumulation within or outside the cell, which is known to cause many diseases. Pathogenic protein aggregates accumulate not only in the extracellular space but also in cellular compartments such as the cytoplasm and nucleus, enabling the classification of associated diseases under the amyloidosis disease group.
Autosomal dominant neurohypophyseal diabetes insipidus (ADNDI) is a rare disease caused by mutations in the arginine vasopressin-neurophysin II (AVP-NPII) gene. These mutations lead to the accumulation of precursor proteins in the endoplasmic reticulum (ER) lumen and the formation of disulfide-linked oligomers. This accumulation results in progressive degeneration of vasopressinergic neurons, allowing ADNDI to be classified as a neurodegenerative disease associated with the formation of fibrillar protein aggregates. While ADNDI forms fibrillar amyloid-like aggregates similar to amyloidosis, it differs from amyloid diseases in that these aggregates accumulate in the ER lumen rather than in the cytosol or extracellular space.
In this thesis, we investigated the misfolding of mutant precursor proteins resulting from the G45C, 207_209delGGC, G88V, C98X, C104F, E108D-1, E108D-2, and R122H mutations identified by our group in ADNDI patients, as well as the resulting amyloid-like aggregate structures of disulfide-bonded oligomers. The maturation processes of mutant proteins, ER-associated degradation pathways, differences in the cytosolic fraction, and their potential retrotranslocation into the cytosol were evaluated. Additionally, differences in the formation of disulfide complexes were identified, intracellular localization was determined using immunofluorescence techniques, and physiological states were analyzed through electron microscopy. Furthermore, mutant proteins were expressed in E. coli to analyze their fibril-forming potential.
Experimental results revealed that mutant precursor proteins formed disulfide-linked homo-oligomer structures. Immunofluorescence and electron microscopy analyses showed that aggregate structures accumulated within the ER. Moreover, bacterial expression studies demonstrated that purified mutant precursor proteins spontaneously formed fibrillar structures. These findings support the classification of ADNDI as a neurodegenerative disease associated with fibrillar protein aggregation.
Künye
[1] A. Blanco, G. Blanco, Proteins, in: Med. Biochem., Elsevier, 2017: pp. 21–71. https://doi.org/10.1016/B978-0-12-803550-4.00003-3.
[2] D. L Nelson, C. Micheael, Lehninger principles of biochemistry, 8th ed., Macmillan Learning,2021, n.d.
[3] P.J. Halling, Proteins: Structures and molecular properties, J. Chem. Technol. Biotechnol. 62 (1995) 105–105. https://doi.org/10.1002/jctb.280620121.
[4] P.D. Sun, C.E. Foster, J.C. Boyington, Overview of protein structural and functional folds., Curr. Protoc. Protein Sci. Chapter 17 (2004). https://doi.org/10.1002/0471140864.ps1701s35.
[5] L.S. Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto, Biochemistry, Eighth edi, W.H. Freeman & Company, a Macmillan Education Imprint, New York, 2015.
[6] G.K. Voeltz, M.M. Rolls, T.A. Rapoport, Structural organization of the endoplasmic reticulum, EMBO Rep. 3 (2002) 944–950. https://doi.org/10.1093/embo-reports/kvf202.
[7] N. Chaudhari, P. Talwar, A. Parimisetty, C.L. d’Hellencourt, P. Ravanan, A molecular web: Endoplasmic reticulum stress, inflammation, and oxidative stress, Front. Cell. Neurosci. 8 (2014) 1–15. https://doi.org/10.3389/fncel.2014.00213.
[8] S. High, Protein translocation at the membrane of the endoplasmic reticulum, Prog. Biophys. Mol. Biol. 63 (1995) 233–250. https://doi.org/10.1016/0079-6107(95)00005-8.
[9] I. Braakman, N.J. Bulleid, Protein folding and modification in the mammalian endoplasmic reticulum, Annu. Rev. Biochem. 80 (2011) 71–99. https://doi.org/10.1146/annurev-biochem-062209-093836.
[10] G. Cooper M, R. Hausman E, The Cell: A Molecular Approach, Oxford University Press, Incorporated, 2016.
[11] D. Stalder, D.C. Gershlick, Direct trafficking pathways from the Golgi apparatus to the plasma membrane, Semin. Cell Dev. Biol. 107 (2020) 112–125. https://doi.org/10.1016/j.semcdb.2020.04.001.
[12] P. Armando J, Neuro-cognitive Mechanism of Imagining Future and I ts R ole in S uicide, Annu. Rev. Cell. Dev. Biol. 16 (2000) 483–519.
[13] R.J. Kaufman, Stress signaling from the lumen of the endoplasmic reticulum: Coordination of gene transcriptional and translational controls, Genes Dev. 13 (1999) 1211–1233. https://doi.org/10.1101/gad.13.10.1211.
[14] C. Hetz, The unfolded protein response: Controlling cell fate decisions under ER stress and beyond, Nat. Rev. Mol. Cell Biol. 13 (2012) 89–102. https://doi.org/10.1038/nrm3270.
[15] I. Braakman, N.J. Bulleid, Protein Folding and Modification in the Mammalian Endoplasmic Reticulum, Annu. Rev. Biochem. 80 (2011) 71–99. https://doi.org/10.1146/annurev-biochem-062209-093836.
[16] D. Stalder, D.C. Gershlick, Direct trafficking pathways from the Golgi apparatus to the plasma membrane, Semin. Cell Dev. Biol. 107 (2020) 112–125. https://doi.org/10.1016/j.semcdb.2020.04.001.
[17] S. Munro, H.R.B. Pelham, A C-terminal signal prevents secretion of luminal ER proteins, Cell 48 (1987) 899–907. https://doi.org/10.1016/0092-8674(87)90086-9.
[18] P. Salahuddin, R.H. Khan, M. Furkan, V.N. Uversky, Z. Islam, M.T. Fatima, Mechanisms of amyloid proteins aggregation and their inhibition by antibodies, small molecule inhibitors, nano-particles and nano-bodies, Int. J. Biol. Macromol. 186 (2021) 580–590. https://doi.org/10.1016/j.ijbiomac.2021.07.056.
[19] K.A. Jellinger, Recent advances in our understanding of neurodegeneration, J. Neural Transm. 116 (2009) 1111–1162. https://doi.org/10.1007/s00702-009-0240-y.
[20] F. Chiti, C.M. Dobson, Protein Misfolding, Functional Amyloid, and Human Disease, Annu. Rev. Biochem. 75 (2006) 333–366. https://doi.org/10.1146/annurev.biochem.75.101304.123901.
[21] J. Lee, E.K. Culyba, E.T. Powers, J.W. Kelly, Amyloid-β forms fibrils by nucleated conformational conversion of oligomers, Nat. Chem. Biol. 7 (2011) 602–609. https://doi.org/10.1038/nchembio.624.
[22] C.M. Dobson, Protein folding and misfolding, Nature 426 (2003) 884–890. https://doi.org/10.1038/nature02261.
[23] S. Lahut, B. Özeş, S. Ağar, A.N. Başak, TDP-43 Proteinopatileri: Nörodejeneratif Konformasyon Bozukluğu Hastalıklarında Yeni Bir Oyuncu, Türk Nöroloi Derg. 18 (2012) 1–10. https://doi.org/10.4274/Tnd.58561.
[24] J. Birk, Fibrillar aggregations of pathogenic pro-vasopressin mutants, Universität Basel, 2009.
[25] G.L. Robertson, Antidiuretic hormone: Normal and disordered function, Endocrinol. Metab. Clin. North Am. 30 (2001) 671–694. https://doi.org/10.1016/S0889-8529(05)70207-3.
[26] E. Feraille, A. Sassi, V. Olivier, G. Arnoux, P.-Y. Martin, Renal water transport in health and disease, Pflügers Arch. - Eur. J. Physiol. 474 (2022) 841–852. https://doi.org/10.1007/s00424-022-02712-9.
[27] C.M. Mutter, T. Smith, O. Menze, M. Zakharia, H. Nguyen, Diabetes Insipidus: Pathogenesis, Diagnosis, and Clinical Management, Cureus (2021). https://doi.org/10.7759/cureus.13523.
[28] C. Koufaris, A. Alexandrou, C. Sismani, N. Skordis, Identification of an AVP-NPII mutation within the AVP moiety in a family with neurohypophyseal diabetes insipidus: review of the literature, Hormones (2015). https://doi.org/10.14310/horm.2002.1604.
[29] M. Christ-Crain, D.G. Bichet, W.K. Fenske, M.B. Goldman, S. Rittig, J.G. Verbalis, A.S. Verkman, Diabetes insipidus, Nat. Rev. Dis. Prim. 5 (2019) 54. https://doi.org/10.1038/s41572-019-0103-2.
[30] M. Spiess, M. Friberg, N. Beuret, C. Prescianotto-Baschong, J. Rutishauser, Role of protein aggregation and degradation in autosomal dominant neurohypophyseal diabetes insipidus, Mol. Cell. Endocrinol. 501 (2020) 110653. https://doi.org/10.1016/j.mce.2019.110653.
[31] J. Rutishauser, N. Beuret, C. Prescianotto-Baschong, M. Spiess, Hereditary Neurohypophyseal Diabetes Insipidus, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-25905-1_14.
[32] The Human Gene Mutation Database (HGMD®), The Human Gene Mutation Database, (n.d.). https://www.hgmd.cf.ac.uk/ac/index.php.
[33] N. Beuret, F. Hasler, C. Prescianotto-Baschong, J. Birk, J. Rutishauser, M. Spiess, Amyloid-like aggregation of provasopressin in diabetes insipidus and secretory granule sorting, BMC Biol. 15 (2017) 5. https://doi.org/10.1186/s12915-017-0347-9.
[34] A.P. Abbes, B. Bruggeman, E.L.T. van den Akker, M.R. de Groot, A.A.M. Franken, V.R. Drexhage, H. Engel, Identification of Two Distinct Mutations at the Same Nucleotide Position, Concomitantly with a Novel Polymorphism in the Vasopressin-Neurophysin II Gene (AVP-NP II) in Two Dutch Families with Familial Neurohypophyseal Diabetes Insipidus, Clin. Chem. 46 (2000) 1699–1702. https://doi.org/10.1093/clinchem/46.10.1699.
[35] Y. Guo, D.W. Sirkis, R. Schekman, Protein Sorting at the trans -Golgi Network, Annu. Rev. Cell Dev. Biol. 30 (2014) 169–206. https://doi.org/10.1146/annurev-cellbio-100913-013012.
[36] L.K. Hansen, S. Rittig, G.L. Robertson, Genetic Basis of Familial Neurohypophyseal Diabetes Insipidus, Trends Endocrinol. Metab. 8 (1997) 363–372. https://doi.org/10.1016/S1043-2760(97)00157-4.
[37] The Hypothalamus and Pituitary Gland, in: Berne &Amp Levy Physiol., 6th editio, Elsevier, 2010: pp. 733–752. https://doi.org/10.1016/B978-0-323-07362-2.50044-9.
[38] C. Bergeron, K. Kovacs, C. Ezrin, C. Mizzen, Hereditary diabetes insipidus: an immunohistochemical study of the hypothalamus and pituitary gland, Acta Neuropathol. 81 (1991) 345–348. https://doi.org/10.1007/BF00305879.
[39] J.R. GREEN, G.C. BUCHAN, E.C. ALVORD, A.G. SWANSON, HEREDITARY AND IDIOPATHIC TYPES OF DIABETES INSIPIDUS, Brain 90 (1967) 707–714. https://doi.org/10.1093/brain/90.3.707.
[40] A. Aguzzi, T. O’Connor, Protein aggregation diseases: pathogenicity and therapeutic perspectives, Nat. Rev. Drug Discov. 9 (2010) 237–248. https://doi.org/10.1038/nrd3050.
[41] N. Beuret, J. Rutishauser, M.D. Bider, M. Spiess, Mechanism of endoplasmic reticulum retention of mutant vasopressin precursor caused by a signal peptide truncation associated with diabetes insipidus, J. Biol. Chem. 274 (1999) 18965–18972. https://doi.org/10.1074/jbc.274.27.18965.
[42] D. Turkkahraman, E. Saglar, T. Karaduman, H. Mergen, AVP-NPII gene mutations and clinical characteristics of the patients with autosomal dominant familial central diabetes insipidus, Pituitary 18 (2015) 898–904. https://doi.org/10.1007/s11102-015-0668-z.
[43] M.Ö. Türkmen, T. Karaduman, B.E. Tuncdemir, M.A. Ünal, H. Mergen, Functional analyses of three different mutations in the AVP-NPII gene causing familial neurohypophyseal diabetes insipidus, Endocrine 74 (2021) 658–665. https://doi.org/10.1007/s12020-021-02803-0.
[44] L.Q. Chen, J.P. Rose, E. Breslow, D. Yang, W.R. Chang, W.F. Furey, M. Sax, B.C. Wang, Crystal structure of a bovine neurophysin II dipeptide complex at 2.8 A determined from the single-wavelength anomalous scattering signal of an incorporated iodine atom., Proc. Natl. Acad. Sci. 88 (1991) 4240–4244. https://doi.org/10.1073/pnas.88.10.4240.
[45] M.A. Friberg, M. Spiess, J. Rutishauser, Degradation of Wild-type Vasopressin Precursor and Pathogenic Mutants by the Proteasome, J. Biol. Chem. 279 (2004) 19441–19447. https://doi.org/10.1074/jbc.M310249200.
[46] J. Birk, M.A. Friberg, C. Prescianotto-Baschong, M. Spiess, J. Rutishauser, Dominant pro-vasopressin mutants that cause diabetes insipidus form disulfide-linked fibrillar aggregates in the endoplasmic reticulum, J. Cell Sci. 122 (2009) 3994–4002. https://doi.org/10.1242/jcs.051136.
[47] F. Deniz, C. Acar, E. Saglar, B. Erdem, T. Karaduman, A. Yonem, E. Cagiltay, S.A. Ay, H. Mergen, Identification of a novel deletion in AVP-NPII gene in a patient with central diabetes insipidus, Ann. Clin. Lab. Sci. 45 (2015) 588–592.
[48] M.E. de Melo, S. Marui, V.N. de Brito, M.C. Mancini, B.B. Mendonca, M. Knoepfelmacher, Autosomal dominant familial neurohypophyseal diabetes insipidus caused by a novel mutation in arginine-vasopressin gene in a Brazilian family, Arq. Bras. Endocrinol. Metabol. 52 (2008) 1272–1276. https://doi.org/10.1590/S0004-27302008000800011.
[49] D. Duzenli, E. Saglar, F. Deniz, O. Azal, B. Erdem, H. Mergen, Mutations in the AVPR2, AVP-NPII, and AQP2 genes in Turkish patients with diabetes insipidus, Endocrine 42 (2012) 664–669. https://doi.org/10.1007/s12020-012-9704-1.
[50] H. Nagasaki, M. Ito, H. Yuasa, H. Saito, M. Fukase, K. Hamada, E. Ishikawa, H. Katakami, Y. Oiso, Two novel mutations in the coding region for neurophysin-II associated with familial central diabetes insipidus., J. Clin. Endocrinol. Metab. 80 (1995) 1352–1356. https://doi.org/10.1210/jcem.80.4.7714110.
[51] S. Baglioni, G. Corona, M. Maggi, M. Serio, A. Peri, Identification of a novel mutation in the arginine vasopressin-neurophysin II gene affecting the sixth intrachain disulfide bridge of the neurophysin II moiety, Eur. J. Endocrinol. (2004) 605–611. https://doi.org/10.1530/eje.0.1510605.
[52] J. Santiprabhob, J.E. Browning, D.R. Repaske, A missense mutation encoding Cys73Phe in neurophysin II is associated with autosomal dominant neurohypophyseal diabetes insipidus, Mol. Genet. Metab. 77 (2002) 112–118. https://doi.org/10.1016/S1096-7192(02)00118-X.
[53] M. Ozcan, T. Karaduman, E. Saglar, B. Erdem, F. Deniz, A. Yonem, K. Baskoy, A.S. Ahmet, O. Oflaz, H. Mergen, A novel E108D mutation of AVP-NPII gene in a Turkish patient with central diabetes insipidus, Endocr. Abstr. 41 (2016) 258. https://doi.org/10.1530/endoabs.41.EP405.
[54] D.Y. Lee, K.A. Kim, Y.G. Yu, K.S. Kim, Substitution of aspartic acid with glutamic acid increases the unfolding transition temperature of a protein, Biochem. Biophys. Res. Commun. 320 (2004) 900–906. https://doi.org/10.1016/j.bbrc.2004.06.031.
[55] E. Saglar, T. Karaduman, M. Ozcan, B. Erdem, O. Oflaz, D. Sahin, F. Deniz, S.A. Ay, H. Mergen, Identification of novel mutations in AVP-NPII gene, FEBS J. 283 (2016) 121. https://doi.org/10.1111/febs.13807.
[56] D.D. Nelakurti, T. Rossetti, A.Y. Husbands, R.C. Petreaca, Arginine Depletion in Human Cancers, Cancers (Basel). 13 (2021) 6274. https://doi.org/10.3390/cancers13246274.
[57] C. Marzocchi, S. Cantara, A. Sagnella, M.G. Castagna, M. Capezzone, Autosomal dominant familial neurohypophyseal diabetes insipidus caused by a novel missense mutation in AVP gene in a large Italian kindred, Endocrine 74 (2021) 188–192. https://doi.org/10.1007/s12020-021-02830-x.
[58] N. Beuret, H. Stettler, A. Renold, J. Rutishauser, M. Spiess, Expression of Regulated Secretory Proteins Is Sufficient to Generate Granule-like Structures in Constitutively Secreting Cells, J. Biol. Chem. 279 (2004) 20242–20249. https://doi.org/10.1074/jbc.M310613200.
[59] H.H. Freeze, C. Kranz, Endoglycosidase and Glycoamidase Release of N‐Linked Glycans, Curr. Protoc. Mol. Biol. 89 (2010). https://doi.org/10.1002/0471142727.mb1713as89.
[60] M. de Fost, A.S.P. van Trotsenburg, H.M. van Santen, E. Endert, C. van den Elzen, E.J. Kamsteeg, D.F. Swaab, E. Fliers, Familial neurohypophyseal diabetes insipidus due to a novel mutation in the arginine vasopressin–neurophysin II gene, Eur. J. Endocrinol. 165 (2011) 161–165. https://doi.org/10.1530/EJE-11-0048.