dc.identifier.citation | [1] A. Blanco, G. Blanco, Proteins, in: Med. Biochem., Elsevier, 2017: pp. 21–71. https://doi.org/10.1016/B978-0-12-803550-4.00003-3.
[2] D. L Nelson, C. Micheael, Lehninger principles of biochemistry, 8th ed., Macmillan Learning,2021, n.d.
[3] P.J. Halling, Proteins: Structures and molecular properties, J. Chem. Technol. Biotechnol. 62 (1995) 105–105. https://doi.org/10.1002/jctb.280620121.
[4] P.D. Sun, C.E. Foster, J.C. Boyington, Overview of protein structural and functional folds., Curr. Protoc. Protein Sci. Chapter 17 (2004). https://doi.org/10.1002/0471140864.ps1701s35.
[5] L.S. Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto, Biochemistry, Eighth edi, W.H. Freeman & Company, a Macmillan Education Imprint, New York, 2015.
[6] G.K. Voeltz, M.M. Rolls, T.A. Rapoport, Structural organization of the endoplasmic reticulum, EMBO Rep. 3 (2002) 944–950. https://doi.org/10.1093/embo-reports/kvf202.
[7] N. Chaudhari, P. Talwar, A. Parimisetty, C.L. d’Hellencourt, P. Ravanan, A molecular web: Endoplasmic reticulum stress, inflammation, and oxidative stress, Front. Cell. Neurosci. 8 (2014) 1–15. https://doi.org/10.3389/fncel.2014.00213.
[8] S. High, Protein translocation at the membrane of the endoplasmic reticulum, Prog. Biophys. Mol. Biol. 63 (1995) 233–250. https://doi.org/10.1016/0079-6107(95)00005-8.
[9] I. Braakman, N.J. Bulleid, Protein folding and modification in the mammalian endoplasmic reticulum, Annu. Rev. Biochem. 80 (2011) 71–99. https://doi.org/10.1146/annurev-biochem-062209-093836.
[10] G. Cooper M, R. Hausman E, The Cell: A Molecular Approach, Oxford University Press, Incorporated, 2016.
[11] D. Stalder, D.C. Gershlick, Direct trafficking pathways from the Golgi apparatus to the plasma membrane, Semin. Cell Dev. Biol. 107 (2020) 112–125. https://doi.org/10.1016/j.semcdb.2020.04.001.
[12] P. Armando J, Neuro-cognitive Mechanism of Imagining Future and I ts R ole in S uicide, Annu. Rev. Cell. Dev. Biol. 16 (2000) 483–519.
[13] R.J. Kaufman, Stress signaling from the lumen of the endoplasmic reticulum: Coordination of gene transcriptional and translational controls, Genes Dev. 13 (1999) 1211–1233. https://doi.org/10.1101/gad.13.10.1211.
[14] C. Hetz, The unfolded protein response: Controlling cell fate decisions under ER stress and beyond, Nat. Rev. Mol. Cell Biol. 13 (2012) 89–102. https://doi.org/10.1038/nrm3270.
[15] I. Braakman, N.J. Bulleid, Protein Folding and Modification in the Mammalian Endoplasmic Reticulum, Annu. Rev. Biochem. 80 (2011) 71–99. https://doi.org/10.1146/annurev-biochem-062209-093836.
[16] D. Stalder, D.C. Gershlick, Direct trafficking pathways from the Golgi apparatus to the plasma membrane, Semin. Cell Dev. Biol. 107 (2020) 112–125. https://doi.org/10.1016/j.semcdb.2020.04.001.
[17] S. Munro, H.R.B. Pelham, A C-terminal signal prevents secretion of luminal ER proteins, Cell 48 (1987) 899–907. https://doi.org/10.1016/0092-8674(87)90086-9.
[18] P. Salahuddin, R.H. Khan, M. Furkan, V.N. Uversky, Z. Islam, M.T. Fatima, Mechanisms of amyloid proteins aggregation and their inhibition by antibodies, small molecule inhibitors, nano-particles and nano-bodies, Int. J. Biol. Macromol. 186 (2021) 580–590. https://doi.org/10.1016/j.ijbiomac.2021.07.056.
[19] K.A. Jellinger, Recent advances in our understanding of neurodegeneration, J. Neural Transm. 116 (2009) 1111–1162. https://doi.org/10.1007/s00702-009-0240-y.
[20] F. Chiti, C.M. Dobson, Protein Misfolding, Functional Amyloid, and Human Disease, Annu. Rev. Biochem. 75 (2006) 333–366. https://doi.org/10.1146/annurev.biochem.75.101304.123901.
[21] J. Lee, E.K. Culyba, E.T. Powers, J.W. Kelly, Amyloid-β forms fibrils by nucleated conformational conversion of oligomers, Nat. Chem. Biol. 7 (2011) 602–609. https://doi.org/10.1038/nchembio.624.
[22] C.M. Dobson, Protein folding and misfolding, Nature 426 (2003) 884–890. https://doi.org/10.1038/nature02261.
[23] S. Lahut, B. Özeş, S. Ağar, A.N. Başak, TDP-43 Proteinopatileri: Nörodejeneratif Konformasyon Bozukluğu Hastalıklarında Yeni Bir Oyuncu, Türk Nöroloi Derg. 18 (2012) 1–10. https://doi.org/10.4274/Tnd.58561.
[24] J. Birk, Fibrillar aggregations of pathogenic pro-vasopressin mutants, Universität Basel, 2009.
[25] G.L. Robertson, Antidiuretic hormone: Normal and disordered function, Endocrinol. Metab. Clin. North Am. 30 (2001) 671–694. https://doi.org/10.1016/S0889-8529(05)70207-3.
[26] E. Feraille, A. Sassi, V. Olivier, G. Arnoux, P.-Y. Martin, Renal water transport in health and disease, Pflügers Arch. - Eur. J. Physiol. 474 (2022) 841–852. https://doi.org/10.1007/s00424-022-02712-9.
[27] C.M. Mutter, T. Smith, O. Menze, M. Zakharia, H. Nguyen, Diabetes Insipidus: Pathogenesis, Diagnosis, and Clinical Management, Cureus (2021). https://doi.org/10.7759/cureus.13523.
[28] C. Koufaris, A. Alexandrou, C. Sismani, N. Skordis, Identification of an AVP-NPII mutation within the AVP moiety in a family with neurohypophyseal diabetes insipidus: review of the literature, Hormones (2015). https://doi.org/10.14310/horm.2002.1604.
[29] M. Christ-Crain, D.G. Bichet, W.K. Fenske, M.B. Goldman, S. Rittig, J.G. Verbalis, A.S. Verkman, Diabetes insipidus, Nat. Rev. Dis. Prim. 5 (2019) 54. https://doi.org/10.1038/s41572-019-0103-2.
[30] M. Spiess, M. Friberg, N. Beuret, C. Prescianotto-Baschong, J. Rutishauser, Role of protein aggregation and degradation in autosomal dominant neurohypophyseal diabetes insipidus, Mol. Cell. Endocrinol. 501 (2020) 110653. https://doi.org/10.1016/j.mce.2019.110653.
[31] J. Rutishauser, N. Beuret, C. Prescianotto-Baschong, M. Spiess, Hereditary Neurohypophyseal Diabetes Insipidus, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-25905-1_14.
[32] The Human Gene Mutation Database (HGMD®), The Human Gene Mutation Database, (n.d.). https://www.hgmd.cf.ac.uk/ac/index.php.
[33] N. Beuret, F. Hasler, C. Prescianotto-Baschong, J. Birk, J. Rutishauser, M. Spiess, Amyloid-like aggregation of provasopressin in diabetes insipidus and secretory granule sorting, BMC Biol. 15 (2017) 5. https://doi.org/10.1186/s12915-017-0347-9.
[34] A.P. Abbes, B. Bruggeman, E.L.T. van den Akker, M.R. de Groot, A.A.M. Franken, V.R. Drexhage, H. Engel, Identification of Two Distinct Mutations at the Same Nucleotide Position, Concomitantly with a Novel Polymorphism in the Vasopressin-Neurophysin II Gene (AVP-NP II) in Two Dutch Families with Familial Neurohypophyseal Diabetes Insipidus, Clin. Chem. 46 (2000) 1699–1702. https://doi.org/10.1093/clinchem/46.10.1699.
[35] Y. Guo, D.W. Sirkis, R. Schekman, Protein Sorting at the trans -Golgi Network, Annu. Rev. Cell Dev. Biol. 30 (2014) 169–206. https://doi.org/10.1146/annurev-cellbio-100913-013012.
[36] L.K. Hansen, S. Rittig, G.L. Robertson, Genetic Basis of Familial Neurohypophyseal Diabetes Insipidus, Trends Endocrinol. Metab. 8 (1997) 363–372. https://doi.org/10.1016/S1043-2760(97)00157-4.
[37] The Hypothalamus and Pituitary Gland, in: Berne &Amp Levy Physiol., 6th editio, Elsevier, 2010: pp. 733–752. https://doi.org/10.1016/B978-0-323-07362-2.50044-9.
[38] C. Bergeron, K. Kovacs, C. Ezrin, C. Mizzen, Hereditary diabetes insipidus: an immunohistochemical study of the hypothalamus and pituitary gland, Acta Neuropathol. 81 (1991) 345–348. https://doi.org/10.1007/BF00305879.
[39] J.R. GREEN, G.C. BUCHAN, E.C. ALVORD, A.G. SWANSON, HEREDITARY AND IDIOPATHIC TYPES OF DIABETES INSIPIDUS, Brain 90 (1967) 707–714. https://doi.org/10.1093/brain/90.3.707.
[40] A. Aguzzi, T. O’Connor, Protein aggregation diseases: pathogenicity and therapeutic perspectives, Nat. Rev. Drug Discov. 9 (2010) 237–248. https://doi.org/10.1038/nrd3050.
[41] N. Beuret, J. Rutishauser, M.D. Bider, M. Spiess, Mechanism of endoplasmic reticulum retention of mutant vasopressin precursor caused by a signal peptide truncation associated with diabetes insipidus, J. Biol. Chem. 274 (1999) 18965–18972. https://doi.org/10.1074/jbc.274.27.18965.
[42] D. Turkkahraman, E. Saglar, T. Karaduman, H. Mergen, AVP-NPII gene mutations and clinical characteristics of the patients with autosomal dominant familial central diabetes insipidus, Pituitary 18 (2015) 898–904. https://doi.org/10.1007/s11102-015-0668-z.
[43] M.Ö. Türkmen, T. Karaduman, B.E. Tuncdemir, M.A. Ünal, H. Mergen, Functional analyses of three different mutations in the AVP-NPII gene causing familial neurohypophyseal diabetes insipidus, Endocrine 74 (2021) 658–665. https://doi.org/10.1007/s12020-021-02803-0.
[44] L.Q. Chen, J.P. Rose, E. Breslow, D. Yang, W.R. Chang, W.F. Furey, M. Sax, B.C. Wang, Crystal structure of a bovine neurophysin II dipeptide complex at 2.8 A determined from the single-wavelength anomalous scattering signal of an incorporated iodine atom., Proc. Natl. Acad. Sci. 88 (1991) 4240–4244. https://doi.org/10.1073/pnas.88.10.4240.
[45] M.A. Friberg, M. Spiess, J. Rutishauser, Degradation of Wild-type Vasopressin Precursor and Pathogenic Mutants by the Proteasome, J. Biol. Chem. 279 (2004) 19441–19447. https://doi.org/10.1074/jbc.M310249200.
[46] J. Birk, M.A. Friberg, C. Prescianotto-Baschong, M. Spiess, J. Rutishauser, Dominant pro-vasopressin mutants that cause diabetes insipidus form disulfide-linked fibrillar aggregates in the endoplasmic reticulum, J. Cell Sci. 122 (2009) 3994–4002. https://doi.org/10.1242/jcs.051136.
[47] F. Deniz, C. Acar, E. Saglar, B. Erdem, T. Karaduman, A. Yonem, E. Cagiltay, S.A. Ay, H. Mergen, Identification of a novel deletion in AVP-NPII gene in a patient with central diabetes insipidus, Ann. Clin. Lab. Sci. 45 (2015) 588–592.
[48] M.E. de Melo, S. Marui, V.N. de Brito, M.C. Mancini, B.B. Mendonca, M. Knoepfelmacher, Autosomal dominant familial neurohypophyseal diabetes insipidus caused by a novel mutation in arginine-vasopressin gene in a Brazilian family, Arq. Bras. Endocrinol. Metabol. 52 (2008) 1272–1276. https://doi.org/10.1590/S0004-27302008000800011.
[49] D. Duzenli, E. Saglar, F. Deniz, O. Azal, B. Erdem, H. Mergen, Mutations in the AVPR2, AVP-NPII, and AQP2 genes in Turkish patients with diabetes insipidus, Endocrine 42 (2012) 664–669. https://doi.org/10.1007/s12020-012-9704-1.
[50] H. Nagasaki, M. Ito, H. Yuasa, H. Saito, M. Fukase, K. Hamada, E. Ishikawa, H. Katakami, Y. Oiso, Two novel mutations in the coding region for neurophysin-II associated with familial central diabetes insipidus., J. Clin. Endocrinol. Metab. 80 (1995) 1352–1356. https://doi.org/10.1210/jcem.80.4.7714110.
[51] S. Baglioni, G. Corona, M. Maggi, M. Serio, A. Peri, Identification of a novel mutation in the arginine vasopressin-neurophysin II gene affecting the sixth intrachain disulfide bridge of the neurophysin II moiety, Eur. J. Endocrinol. (2004) 605–611. https://doi.org/10.1530/eje.0.1510605.
[52] J. Santiprabhob, J.E. Browning, D.R. Repaske, A missense mutation encoding Cys73Phe in neurophysin II is associated with autosomal dominant neurohypophyseal diabetes insipidus, Mol. Genet. Metab. 77 (2002) 112–118. https://doi.org/10.1016/S1096-7192(02)00118-X.
[53] M. Ozcan, T. Karaduman, E. Saglar, B. Erdem, F. Deniz, A. Yonem, K. Baskoy, A.S. Ahmet, O. Oflaz, H. Mergen, A novel E108D mutation of AVP-NPII gene in a Turkish patient with central diabetes insipidus, Endocr. Abstr. 41 (2016) 258. https://doi.org/10.1530/endoabs.41.EP405.
[54] D.Y. Lee, K.A. Kim, Y.G. Yu, K.S. Kim, Substitution of aspartic acid with glutamic acid increases the unfolding transition temperature of a protein, Biochem. Biophys. Res. Commun. 320 (2004) 900–906. https://doi.org/10.1016/j.bbrc.2004.06.031.
[55] E. Saglar, T. Karaduman, M. Ozcan, B. Erdem, O. Oflaz, D. Sahin, F. Deniz, S.A. Ay, H. Mergen, Identification of novel mutations in AVP-NPII gene, FEBS J. 283 (2016) 121. https://doi.org/10.1111/febs.13807.
[56] D.D. Nelakurti, T. Rossetti, A.Y. Husbands, R.C. Petreaca, Arginine Depletion in Human Cancers, Cancers (Basel). 13 (2021) 6274. https://doi.org/10.3390/cancers13246274.
[57] C. Marzocchi, S. Cantara, A. Sagnella, M.G. Castagna, M. Capezzone, Autosomal dominant familial neurohypophyseal diabetes insipidus caused by a novel missense mutation in AVP gene in a large Italian kindred, Endocrine 74 (2021) 188–192. https://doi.org/10.1007/s12020-021-02830-x.
[58] N. Beuret, H. Stettler, A. Renold, J. Rutishauser, M. Spiess, Expression of Regulated Secretory Proteins Is Sufficient to Generate Granule-like Structures in Constitutively Secreting Cells, J. Biol. Chem. 279 (2004) 20242–20249. https://doi.org/10.1074/jbc.M310613200.
[59] H.H. Freeze, C. Kranz, Endoglycosidase and Glycoamidase Release of N‐Linked Glycans, Curr. Protoc. Mol. Biol. 89 (2010). https://doi.org/10.1002/0471142727.mb1713as89.
[60] M. de Fost, A.S.P. van Trotsenburg, H.M. van Santen, E. Endert, C. van den Elzen, E.J. Kamsteeg, D.F. Swaab, E. Fliers, Familial neurohypophyseal diabetes insipidus due to a novel mutation in the arginine vasopressin–neurophysin II gene, Eur. J. Endocrinol. 165 (2011) 161–165. https://doi.org/10.1530/EJE-11-0048. | tr_TR |