Basit öğe kaydını göster

dc.contributor.authorArda, Altuğ
dc.date.accessioned2019-12-17T07:03:08Z
dc.date.available2019-12-17T07:03:08Z
dc.date.issued2016
dc.identifier.issn1742-6588
dc.identifier.urihttps://doi.org/10.1088/1742-6596/766/1/012002
dc.identifier.urihttp://hdl.handle.net/11655/20411
dc.description.abstractApproximate analytical solutions of a two-term potential are studied for the relativistic wave equations, namely, for the Klein-Gordon and Dirac equations. The results are obtained by solving of a Riemann-type equation whose solution can be written in terms of hypergeometric function F-2(1)(a; b; c; z). The energy eigenvalue equations and the corresponding normalized wave functions are given both for two wave equations. The results for some special cases including the Manning-Rosen potential, the Hulthen potential and the Coulomb potential are also discussed by setting the parameters as required.
dc.language.isoen
dc.publisherIop Publishing Ltd
dc.relation.isversionof10.1088/1742-6596/766/1/012002
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectPhysics
dc.titleRelativistic Approximate Solutions For a Two-Term Potential: Riemann-Type Equation
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.relation.journalInternational Conference On Quantum Science And Applications (Icqsa-2016)
dc.contributor.departmentMatematik ve Fen Bilimleri Eğitimi
dc.identifier.volume766
dc.description.indexWoS
dc.description.indexScopus


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster