Kasko Sigortasında Makine Öğrenmesi Yöntemleri ile Hasarlı/Hasarsız Durum Tahmini

Göster/Aç
Tarih
19-09-19Yazar
Kilisli, Seda
Ambargo Süresi
Acik erisimpublications
0
supporting
0
mentioning
0
contrasting
0
0
0
0
0
Citing PublicationsSupportingMentioningContrasting
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Üst veri
Tüm öğe kaydını gösterÖzet
The aim of this study is to estimate whether new insured who will join insurance company have claim by using machine learning methods. The increase in the number of vehicles in traffic each year brings with it an increase in the risk of accidents. Increasing number of accidents increases the costs of insurance companies and this increase is also reflected in the insurance premiums. However, due to price competition in insurance companies, sales below the optimal premium cause companies to fall behind their profitability targets. In order for insurance companies to maintain their profitability, it is very important to include the profitable insured profile in the portfolio. In order to include the profitable insured in the portfolio, models that simulate individual behaviors are needed. Therefore, by using machine learning algorithms used in many sectors recently, the model that makes the best estimate of claimed policies in the portfolio is determined and compared with the logistic regression model commonly used in the insurance sector.