Show simple item record

dc.contributor.advisorDikmetaş, Özlem
dc.contributor.authorKöycü, Hande
dc.date.accessioned2025-03-10T08:42:15Z
dc.date.issued2024-08-29
dc.date.submitted2024-06-27
dc.identifier.citation1. Li X. Longitudinal study of the normal eyes in unilateral keratoconus patients. Ophthalmology [Internet]. 2004 Mar;111(3):440–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0161642003014970 2. Romero-Jiménez M, Santodomingo-Rubido J, González-Méijome J-M. The Thinnest, Steepest, and Maximum Elevation Corneal Locations in Noncontact and Contact Lens Wearers in Keratoconus. Cornea [Internet]. 2013 Mar;32(3):332–7. Available from: https://journals.lww.com/00003226- 201303000-00019 3. Krachmer JH, Feder RS, Belin MW. Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol [Internet]. 1984 Jan;28(4):293–322. Available from: https://linkinghub.elsevier.com/retrieve/pii/0039625784900948 4. Wisse RPL, Kuiper JJW, Gans R, Imhof S, Radstake TRDJ, Van der Lelij A. Cytokine Expression in Keratoconus and its Corneal Microenvironment: A Systematic Review. Ocul Surf [Internet]. 2015 Oct;13(4):272–83. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1542012415000531 5. Galvis V, Sherwin T, Tello A, Merayo J, Barrera R, Acera A. Keratoconus: an inflammatory disorder? Eye [Internet]. 2015 Jul 1;29(7):843–59. Available from: https://www.nature.com/articles/eye201563 6. Nichols JJ. The relation between disease asymmetry and severity in keratoconus. Br J Ophthalmol [Internet]. 2004 Jun 1;88(6):788–91. Available from: https://bjo.bmj.com/lookup/doi/10.1136/bjo.2003.034520 7. Rabinowitz YS. Keratoconus. Surv Ophthalmol [Internet]. 1998 Jan;42(4):297–319. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0039625797001197 8. Flockerzi E, Xanthopoulou K, Goebels SC, Zemova E, Razafimino S, Hamon L, et al. Keratoconus staging by decades: a baseline ABCD classification of 1000 patients in the Homburg Keratoconus Center. Br J Ophthalmol [Internet]. 2021 Aug;105(8):1069–75. Available from: https://bjo.bmj.com/lookup/doi/10.1136/bjophthalmol-2020-316789 9. Özalp O, Atalay E, Yıldırım N. Prevalence and risk factors for keratoconus in a university-based population in Turkey. J Cataract Refract Surg [Internet]. 2021 Dec;47(12):1524–9. Available from: https://journals.lww.com/10.1097/j.jcrs.0000000000000669 10. Khaled ML, Helwa I, Drewry M, Seremwe M, Estes A, Liu Y. Molecular and Histopathological Changes Associated with Keratoconus. Biomed Res Int 121 [Internet]. 2017;2017:1–16. Available from: https://www.hindawi.com/journals/bmri/2017/7803029/ 11. Brookes NH, Loh I-P, Clover GM, Poole CA, Sherwin T. Involvement of corneal nerves in the progression of keratoconus. Exp Eye Res [Internet]. 2003 Oct;77(4):515–24. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0014483503001489 12. Mathan JJ, Gokul A, Simkin SK, Meyer JJ, Patel D V., McGhee CNJ. Topographic screening reveals keratoconus to be extremely common in Down syndrome. Clin Experiment Ophthalmol [Internet]. 2020 Dec 8;48(9):1160–7. Available from: https://onlinelibrary.wiley.com/doi/10.1111/ceo.13852 13. Elder MJ. Leber Congenital Amaurosis and Its Association With Keratoconus and Keratoglobus. J Pediatr Ophthalmol Strabismus [Internet]. 1994 Jan;31(1):38–40. Available from: https://journals.healio.com/doi/10.3928/0191-3913-19940101-08 14. Robertson I. KERATOCONUS AND THE EHLERS.DANLOS SYNDROME: A NEW ASPECT OF KERATOCONUS. Med J Aust [Internet]. 1975 May 3;1(18):571–3. Available from: https://onlinelibrary.wiley.com/doi/abs/10.5694/j.1326-5377.1975.tb111590.x 15. Lee A, Sakhalkar M. Ocular manifestations of Noonan syndrome in twin siblings: A case report of keratoconus with acute corneal hydrops. Indian J Ophthalmol [Internet]. 2014;62(12):1171. Available from: http://www.ijo.in/text.asp?2014/62/12/1171/126992 16. Rabinowitz YS, Galvis V, Tello A, Rueda D, García JD. Genetics vs chronic corneal mechanical trauma in the etiology of keratoconus. Exp Eye Res [Internet]. 2021 Jan;202:108328. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0014483520305868 17. Tuft SJ, Hassan H, George S, Frazer DG, Willoughby CE, Liskova P. Keratoconus in 18 pairs of twins. Acta Ophthalmol [Internet]. 2012 Sep;90(6):e482–6. Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1755-3768.2012.02448.x 18. Wang Y, Rabinowitz YS, Rotter JI, Yang H. Genetic epidemiological study of keratoconus: Evidence for major gene determination. Am J Med Genet [Internet]. 2000 Aug 28;93(5):403–9. Available from: https://onlinelibrary.wiley.com/doi/10.1002/1096- 8628(20000828)93:5%3C403::AID-AJMG11%3E3.0.CO;2-A 19. Gonzalez V. Computer-Assisted Corneal Topography in Parents of Patients With Keratoconus. Arch Ophthalmol [Internet]. 1992 Oct 1;110(10):1412. Available from: http://archopht.jamanetwork.com/article.aspx?doi=10.1001/archopht.1992.010 80220074024 122 20. Kriszt Á, Losonczy G, Berta A, Vereb G, Takács L. Segregation analysis suggests that keratoconus is a complex non-mendelian disease. Acta Ophthalmol [Internet]. 2014 Nov;92(7):e562–8. Available from: https://onlinelibrary.wiley.com/doi/10.1111/aos.12389 21. Chen S, Li X-Y, Jin J-J, Shen R-J, Mao J-Y, Cheng F-F, et al. Genetic Screening Revealed Latent Keratoconus in Asymptomatic Individuals. Front Cell Dev Biol [Internet]. 2021 May 31;9. Available from: https://www.frontiersin.org/articles/10.3389/fcell.2021.650344/full 22. Bykhovskaya Y, Rabinowitz YS. Update on the genetics of keratoconus. Exp Eye Res [Internet]. 2021 Jan;202:108398. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0014483520306564 23. Bykhovskaya Y, Li X, Taylor KD, Haritunians T, Rotter JI, Rabinowitz YS. Linkage Analysis of High-density SNPs Confirms Keratoconus Locus at 5q Chromosomal Region. Ophthalmic Genet [Internet]. 2014 Feb 20;1–2. Available from: http://www.tandfonline.com/doi/full/10.3109/13816810.2014.889172 24. Mas Tur V, MacGregor C, Jayaswal R, O’Brart D, Maycock N. A review of keratoconus: Diagnosis, pathophysiology, and genetics. Surv Ophthalmol [Internet]. 2017 Nov;62(6):770–83. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0039625717300462 25. Cristina Kenney M, Brown DJ. The Cascade Hypothesis of Keratoconus. Contact Lens Anterior Eye [Internet]. 2003 Sep;26(3):139–46. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1367048403000225 26. Loukovitis E, Kozeis N, Gatzioufas Z, Kozei A, Tsotridou E, Stoila M, et al. The Proteins of Keratoconus: a Literature Review Exploring Their Contribution to the Pathophysiology of the Disease. Adv Ther [Internet]. 2019 Sep 30;36(9):2205–22. Available from: http://link.springer.com/10.1007/s12325-019-01026-0 27. Yam GH-F, Fuest M, Zhou L, Liu Y-C, Deng L, Chan AS-Y, et al. Differential epithelial and stromal protein profiles in cone and non-cone regions of keratoconus corneas. Sci Rep [Internet]. 2019 Feb 27;9(1):2965. Available from: https://www.nature.com/articles/s41598-019-39182-6 28. Navel V, Malecaze J, Pereira B, Baker JS, Malecaze F, Sapin V, et al. Oxidative and antioxidative stress markers in keratoconus: a systematic review and meta-analysis. Acta Ophthalmol [Internet]. 2021 Sep 23;99(6). Available from: https://onlinelibrary.wiley.com/doi/10.1111/aos.14714 29. Balasubramanian SA, Pye DC, Willcox MDP. Are Proteinases the Reason for Keratoconus? Curr Eye Res [Internet]. 2010 Mar 7;35(3):185–91. Available from: http://www.tandfonline.com/doi/full/10.3109/02713680903477824 123 30. Sherwin T, Brookes NH, Loh I-P, Poole CA, Clover GM. Cellular Incursion into Bowman’s Membrane in the Peripheral Cone of the Keratoconic Cornea. Exp Eye Res [Internet]. 2002 Apr;74(4):473–82. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0014483501911571 31. Alkanaan A, Barsotti R, Kirat O, Khan A, Almubrad T, Akhtar S. Collagen fibrils and proteoglycans of peripheral and central stroma of the keratoconus cornea - Ultrastructure and 3D transmission electron tomography. Sci Rep [Internet]. 2019 Dec 27;9(1):19963. Available from: https://www.nature.com/articles/s41598-019-56529-1 32. Abdul-Maksoud RS, Fouad RA, Elsayed TG, Ibrahem RA, Badawi AE. The impact of catalase and glutathione peroxidase-1 genetic polymorphisms on their enzyme activities among Egyptian patients with keratoconus. J Gene Med [Internet]. 2020 Aug 7;22(8). Available from: https://onlinelibrary.wiley.com/doi/10.1002/jgm.3192 33. Gondhowiardjo TD, van Haeringen NJ. Corneal Aldehyde Dehydrogenase, Glutathione Reductase, and Glutathione S-Transferase in Pathologic Corneas. Cornea [Internet]. 1993 Jul;12(4):310–4. Available from: http://journals.lww.com/00003226-199307000-00006 34. Göncü T, Akal A, Adbelli FM, Çakmak S, Sezen H, Ylmaz ÖF. Tear Film and Serum Prolidase Activity and Oxidative Stress in Patients With Keratoconus. Cornea [Internet]. 2015 Sep;34(9):1019–23. Available from: https://journals.lww.com/00003226-201509000-00005 35. Amit C, Padmanabhan P, Elchuri S V., Narayanan J. Probing the effect of matrix stiffness in endocytic signalling pathway of corneal epithelium. Biochem Biophys Res Commun [Internet]. 2020 Apr;525(2):280–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006291X20303351 36. Gasset AR, Houde WL, Garcia-Bengochea M. Hard Contact Lens Wear as an Environmental Risk in Keratoconus. Am J Ophthalmol [Internet]. 1978 Mar;85(3):339–41. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002939414777256 37. Ahuja P, Dadachanji Z, Shetty R, Nagarajan S, Khamar P, Sethu S, et al. Relevance of IgE, allergy and eye rubbing in the pathogenesis and management of Keratoconus. Indian J Ophthalmol [Internet]. 2020;68(10):2067. Available from: https://journals.lww.com/ijo/Fulltext/2020/68100/Relevance_of_IgE,_allergy_ and_eye_rubbing_in_the.6.aspx 38. Hashemi H, Heydarian S, Hooshmand E, Saatchi M, Yekta A, Aghamirsalim M, et al. The Prevalence and Risk Factors for Keratoconus: A Systematic Review and Meta-Analysis. Cornea [Internet]. 2020 Feb;39(2):263–70. Available from: https://journals.lww.com/10.1097/ICO.0000000000002150 124 39. Kemp EG, Lewis CJ. Immunoglobulin patterns in keratoconus with particular reference to total and specific IgE levels. Br J Ophthalmol [Internet]. 1982 Nov 1;66(11):717–20. Available from: https://bjo.bmj.com/lookup/doi/10.1136/bjo.66.11.717 40. Claessens JLJ, Godefrooij DA, Vink G, Frank LE, Wisse RPL. Nationwide epidemiological approach to identify associations between keratoconus and immune-mediated diseases. Br J Ophthalmol [Internet]. 2022 Oct;106(10):1350–4. Available from: https://bjo.bmj.com/lookup/doi/10.1136/bjophthalmol-2021-318804 41. Valdez-García JE, Sepúlveda R, Salazar-Martínez JJ, Lozano-Ramírez JF. Prevalence of keratoconus in an adolescent population. Rev Mex Oftalmol [Internet]. 2014 Jul;88(3):95–8. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0187451914000316 42. Jonas JB, Nangia V, Matin A, Kulkarni M, Bhojwani K. Prevalence and Associations of Keratoconus in Rural Maharashtra in Central India: The Central India Eye and Medical Study. Am J Ophthalmol [Internet]. 2009 Nov;148(5):760–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002939409004590 43. Henriquez MA, Hadid M, Izquierdo L. A Systematic Review of Subclinical Keratoconus and Forme Fruste Keratoconus. J Refract Surg [Internet]. 2020 Apr;36(4):270–9. Available from: https://journals.healio.com/doi/10.3928/1081597X-20200212-03 44. Toprak I, Vega A, Alió del Barrio JL, Espla E, Cavas F, Alió JL. Diagnostic Value of Corneal Epithelial and Stromal Thickness Distribution Profiles in Forme Fruste Keratoconus and Subclinical Keratoconus. Cornea [Internet]. 2021 Jan;40(1):61–72. Available from: https://journals.lww.com/10.1097/ICO.0000000000002435 45. Toprak I, Cavas F, Velázquez JS, Alio del Barrio JL, Alio JL. Subclinical keratoconus detection with three-dimensional (3-D) morphogeometric and volumetric analysis. Acta Ophthalmol [Internet]. 2020 Dec 15;98(8). Available from: https://onlinelibrary.wiley.com/doi/10.1111/aos.14433 46. Weed KH, McGhee CNJ, MacEwen CJ. Atypical unilateral superior keratoconus in young males. Contact Lens Anterior Eye [Internet]. 2005 Dec;28(4):177–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1367048405000810 47. Rafati S, Hashemi H, Nabovati P, Doostdar A, Yekta A, Aghamirsalim M, et al. Demographic profile, clinical, and topographic characteristics of keratoconus patients attending at a tertiary eye center. J Curr Ophthalmol [Internet]. 2019 Sep;31(3):268–74. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452232518302348 125 48. Naderan M, Jahanrad A, Farjadnia M. Clinical biomicroscopy and retinoscopy findings of keratoconus in a Middle Eastern population. Clin Exp Optom [Internet]. 2018 Jan 1;101(1):46–51. Available from: https://www.tandfonline.com/doi/full/10.1111/cxo.12579 49. Bühren J. Keratoconus. In: Encyclopedia of Ophthalmology [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2016. p. 1–3. Available from: https://link.springer.com/10.1007/978-3-642-35951-4_439-4 50. Kennedy RH, Bourne WM, Dyer JA. A 48-Year Clinical and Epidemiologic Study of Keratoconus. Am J Ophthalmol [Internet]. 1986 Mar;101(3):267–73. Available from: https://linkinghub.elsevier.com/retrieve/pii/0002939486908172 51. Zadnik K, Barr JT, Gordon MO, Edrington TB. Biomicroscopic Signs and Disease Severity in Keratoconus. Cornea [Internet]. 1996 Mar;15(2):139–46. Available from: http://journals.lww.com/00003226-199603000-00006 52. Barr JT, Wilson BS, Gordon MO, Rah MJ, Riley C, Kollbaum PS, et al. Estimation of the Incidence and Factors Predictive of Corneal Scarring in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study. Cornea [Internet]. 2006 Jan;25(1):16–25. Available from: https://journals.lww.com/00003226-200601000-00003 53. Gold J, Chauhan V, Rojanasthien S, Fitzgerald J. Munson’s Sign: An Obvious Finding to Explain Acute Vision Loss. Clin Pract Cases Emerg Med [Internet]. 2019 Jul 8;3(3):312–3. Available from: https://escholarship.org/uc/item/5bv7k846 54. Rizzuti AB. Diagnostic Illumination Test for Keratoconus. Am J Ophthalmol [Internet]. 1970 Jul;70(1):141–3. Available from: https://linkinghub.elsevier.com/retrieve/pii/0002939470906811 55. Kumar M, Shetty R, Lalgudi VG, Khamar P, Vincent SJ. Scleral Lens Visual Rehabilitation of Sequential Bilateral Corneal Hydrops With Post-LASIK Ectasia. Eye Contact Lens Sci Clin Pract [Internet]. 2021 Jul;47(7):429–31. Available from: https://journals.lww.com/10.1097/ICL.0000000000000766 56. Kreps EO, Claerhout I, Koppen C. The Outcome of Scleral Lens Fitting for Keratoconus With Resolved Corneal Hydrops. Cornea [Internet]. 2019 Jul 4;38(7):855–8. Available from: https://journals.lww.com/00003226- 201907000-00011 57. Fan Gaskin JC, Patel D V., McGhee CNJ. Acute Corneal Hydrops in Keratoconus—New Perspectives. Am J Ophthalmol [Internet]. 2014 May;157(5):921-928.e1. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002939414000476 126 58. Barsam A, Brennan N, Petrushkin H, Xing W, Quartilho A, Bunce C, et al. Case-control study of risk factors for acute corneal hydrops in keratoconus. Br J Ophthalmol [Internet]. 2017 Apr;101(4):499–502. Available from: https://bjo.bmj.com/lookup/doi/10.1136/bjophthalmol-2015-308251 59. Martínez-Abad A, Piñero DP. New perspectives on the detection and progression of keratoconus. J Cataract Refract Surg [Internet]. 2017 Sep;43(9):1213–27. Available from: https://journals.lww.com/02158034- 201709000-00015 60. Kanclerz P, Khoramnia R, Wang X. Current Developments in Corneal Topography and Tomography. Diagnostics [Internet]. 2021 Aug 13;11(8):1466. Available from: https://www.mdpi.com/2075-4418/11/8/1466 61. Klyce SD. Chasing the suspect: keratoconus. Br J Ophthalmol [Internet]. 2009 Jul 1;93(7):845–7. Available from: https://bjo.bmj.com/lookup/doi/10.1136/bjo.2008.147371 62. Gomes JAP, Tan D, Rapuano CJ, Belin MW, Ambrósio R, Guell JL, et al. Global Consensus on Keratoconus and Ectatic Diseases. Cornea [Internet]. 2015 Apr;34(4):359–69. Available from: https://journals.lww.com/00003226- 201504000-00001 63. Pratik Kornea Topografi,Prof. Dr. Özge Saraç, Editor, Anadolu Kitabevi, Ankara, pp. 15-16. 64. Sinjab MM. Keratokonus ve Keratektazilerin Sınıflandırılması ve Desenleri. Çeviri: Özge Saraç, Seher Uysal. Keratokonus Tedavisine Pratik Yaklaşım. Çeviri Editörü: Nurullah Çağıl. Springer - Verlag Berlin Heidelberg; 2012, s27-58. 65. Rabinowitz YS. Videokeratographic Indices to Aid in Screening for Keratoconus. J Refract Surg [Internet]. 1995 Sep;11(5):371–406. Available from: https://journals.healio.com/doi/10.3928/1081-597X-19950901-14 66. Hashemi H, Mehravaran S. Day to Day Clinically Relevant Corneal Elevation, Thickness, and Curvature Parameters Using the Orbscan II Scanning Slit Topographer and the Pentacam Scheimpflug Imaging Device. Middle East Afr J Ophthalmol [Internet]. 2010 Jan;17(1):44–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20543936 67. Reinstein DZ, Archer TJ, Gobbe M. Corneal Epithelial Thickness Profile in the Diagnosis of Keratoconus. J Refract Surg [Internet]. 2009 Jul;25(7):604– 10. Available from: https://journals.healio.com/doi/10.3928/1081597X 20090610-06 68. Sawaguchi S. Three-Dimensional Scanning Electron Microscopic Study of Keratoconus Corneas. Arch Ophthalmol [Internet]. 1998 Jan 1;116(1):62. 127 Available from: http://archopht.jamanetwork.com/article.aspx?doi=10.1001/archopht.116.1.62 69. Xu Z, Jiang J, Yang C, Huang S, Peng M, Li W, et al. Value of corneal epithelial and Bowman’s layer vertical thickness profiles generated by UHR OCT for sub-clinical keratoconus diagnosis. Sci Rep [Internet]. 2016 Aug 11;6(1):31550. Available from: https://www.nature.com/articles/srep31550 70. Li Y, Chamberlain W, Tan O, Brass R, Weiss JL, Huang D. Subclinical keratoconus detection by pattern analysis of corneal and epithelial thickness maps with optical coherence tomography. J Cataract Refract Surg [Internet]. 2016 Feb;42(2):284–95. Available from: https://journals.lww.com/02158034- 201602000-00016 71. Li Y, Tan O, Brass R, Weiss JL, Huang D. Corneal Epithelial Thickness Mapping by Fourier-Domain Optical Coherence Tomography in Normal and Keratoconic Eyes. Ophthalmology [Internet]. 2012 Dec;119(12):2425–33. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0161642012005544 72. Yang Y, Pavlatos E, Chamberlain W, Huang D, Li Y. Keratoconus detection using OCT corneal and epithelial thickness map parameters and patterns. J Cataract Refract Surg [Internet]. 2021 Jun;47(6):759–66. Available from: https://journals.lww.com/10.1097/j.jcrs.0000000000000498 73. Belin MW, Khachikian SS. An introduction to understanding elevation-based topography: how elevation data are displayed - a review. Clin Experiment Ophthalmol [Internet]. 2009 Jan;37(1):14–29. Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1442-9071.2008.01821.x 74. Cavas-Martínez F, Fernández-Pacheco DG, De la Cruz-Sánchez E, Nieto Martínez J, Fernández Cañavate FJ, Vega-Estrada A, et al. Geometrical Custom Modeling of Human Cornea In Vivo and Its Use for the Diagnosis of Corneal Ectasia. Ljubimov A V., editor. PLoS One [Internet]. 2014 Oct 17;9(10):e110249. Available from: https://dx.plos.org/10.1371/journal.pone.0110249 75. Itoi M, Kitazawa K, Yokota I, Wakimasu K, Cho Y, Nakamura Y, et al. Anterior and posterior ratio of corneal surface areas: A novel index for detecting early stage keratoconus. Liu Y-C, editor. PLoS One [Internet]. 2020 Apr 2;15(4):e0231074. Available from: https://dx.plos.org/10.1371/journal.pone.0231074 76. Consejo A, Alonso-Caneiro D, Wojtkowski M, Vincent SJ. Corneal tissue properties following scleral lens wear using Scheimpflug imaging. Ophthalmic Physiol Opt [Internet]. 2020 Sep 23;40(5):595–606. Available from: https://onlinelibrary.wiley.com/doi/10.1111/opo.12710 128 77. Consejo A, Glawdecka K, Karnowski K, Solarski J, Rozema JJ, Wojtkowski M, et al. Corneal Properties of Keratoconus Based on Scheimpflug Light Intensity Distribution. Investig Opthalmology Vis Sci [Internet]. 2019 Jul 23;60(8):3197. Available from: https://iovs.arvojournals.org/article.aspx?articleid=2739386 78. Consejo A, Solarski J, Karnowski K, Rozema JJ, Wojtkowski M, Iskander DR. Keratoconus Detection Based on a Single Scheimpflug Image. Transl Vis Sci Technol [Internet]. 2020 Jun 26;9(7):36. Available from: https://tvst.arvojournals.org/article.aspx?articleid=2770210 79. Jiménez-García M, Ní Dhubhghaill S, Consejo A, Hershko S, Koppen C, Rozema JJ. Scheimpflug Densitometry in Keratoconus: A New Method of Visualizing the Cone. Cornea [Internet]. 2021 Feb;40(2):194–202. Available from: https://journals.lww.com/10.1097/ICO.0000000000002458 80. Ting DSJ, Foo VH, Yang LWY, Sia JT, Ang M, Lin H, et al. Artificial intelligence for anterior segment diseases: Emerging applications in ophthalmology. Br J Ophthalmol [Internet]. 2021 Feb;105(2):158–68. Available from: https://bjo.bmj.com/lookup/doi/10.1136/bjophthalmol-2019- 315651 81. Issarti I, Consejo A, Jiménez-García M, Kreps EO, Koppen C, Rozema JJ. Logistic index for keratoconus detection and severity scoring (Logik). Comput Biol Med [Internet]. 2020 Jul;122:103809. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0010482520301761 82. Kamiya K, Ayatsuka Y, Kato Y, Fujimura F, Takahashi M, Shoji N, et al. Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography: a diagnostic accuracy study. BMJ Open [Internet]. 2019 Sep 27;9(9):e031313. Available from: https://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2019-031313 83. Cao K, Verspoor K, Sahebjada S, Baird PN. Evaluating the Performance of Various Machine Learning Algorithms to Detect Subclinical Keratoconus. Transl Vis Sci Technol [Internet]. 2020 Apr 24;9(2):24. Available from: https://tvst.arvojournals.org/article.aspx?articleid=2765235 84. Accardo PA, Pensiero S. Neural network-based system for early keratoconus detection from corneal topography. J Biomed Inform [Internet]. 2002 Jun;35(3):151–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1532046402005130 85. Vellara HR, Patel D V. Biomechanical properties of the keratoconic cornea: a review. Clin Exp Optom [Internet]. 2015 Jan 1;98(1):31–8. Available from: https://www.tandfonline.com/doi/full/10.1111/cxo.12211 86. Nash IS, Greene PR, Foster CS. Comparison of mechanical properties of keratoconus and normal corneas. Exp Eye Res [Internet]. 1982 129 Nov;35(5):413–24. Available from: https://linkinghub.elsevier.com/retrieve/pii/0014483582900409 87. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg [Internet]. 2005 Jan;31(1):156–62. Available from: https://journals.lww.com/02158034- 200501000-00043 88. Shetty R, Francis M, Shroff R, Pahuja N, Khamar P, Girrish M, et al. Corneal Biomechanical Changes and Tissue Remodeling After SMILE and LASIK. Investig Opthalmology Vis Sci [Internet]. 2017 Nov 3;58(13):5703. Available from: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.17-22864 89. Vinciguerra R, Ambrósio R, Roberts CJ, Azzolini C, Vinciguerra P. Biomechanical Characterization of Subclinical Keratoconus Without Topographic or Tomographic Abnormalities. J Refract Surg [Internet]. 2017 Jun;33(6):399–407. Available from: https://journals.healio.com/doi/10.3928/1081597X-20170213-01 90. Luz A, Lopes B, Hallahan KM, Valbon B, Fontes B, Schor P, et al. Discriminant Value of Custom Ocular Response Analyzer Waveform Derivatives in Forme Fruste Keratoconus. Am J Ophthalmol [Internet]. 2016 Apr;164:14–21. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002939415300258 91. De Stefano VS, Ford MR, Seven I, Dupps WJ. Depth-Dependent Corneal Biomechanical Properties in Normal and Keratoconic Subjects by Optical Coherence Elastography. Transl Vis Sci Technol [Internet]. 2020 Jun 3;9(7):4. Available from: https://tvst.arvojournals.org/article.aspx?articleid=2766304 92. Jesus DA, Iskander DR. Assessment of corneal properties based on statistical modeling of OCT speckle. Biomed Opt Express [Internet]. 2017 Jan 1;8(1):162. Available from: https://opg.optica.org/abstract.cfm?URI=boe-8-1- 162 93. Perry HD, Buxton JN, Fine BS. Round and Oval Cones in Keratoconus. Ophthalmology [Internet]. 1980 Sep;87(9):905–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0161642080351452 94. Vega Estrada A, Sanz Díez P, Alió JL. Keratoconus Grading and Its Therapeutic Implications. In 2017. p. 177–84. Available from: http://link.springer.com/10.1007/978-3-319-43881-8_15 95. Amsler M. Kératocône classique et kératocône fruste; arguments unitaires. Ophthalmologica [Internet]. 1946;111(2–3):96–101. Available from: https://www.karger.com/Article/FullText/300309 96. Alió JL, Shabayek MH. Corneal Higher Order Aberrations: A Method to Grade Keratoconus. J Refract Surg [Internet]. 2006 Jun;22(6):539–45. 130 Available from: https://journals.healio.com/doi/10.3928/1081-597X 20060601-05 97. McMahon TT, Szczotka-Flynn L, Barr JT, Anderson RJ, Slaughter ME, Lass JH, et al. A New Method for Grading the Severity of Keratoconus. Cornea [Internet]. 2006 Aug;25(7):794–800. Available from: https://journals.lww.com/00003226-200608000-00007 98. Alió JL, Piñero DP, Alesón A, Teus MA, Barraquer RI, Murta J, et al. Keratoconus-integrated characterization considering anterior corneal aberrations, internal astigmatism, and corneal biomechanics. J Cataract Refract Surg [Internet]. 2011 Mar;37(3):552–68. Available from: https://journals.lww.com/02158034-201103000-00020 99. Belin M, Duncan J. Keratoconus: The ABCD Grading System. Klin Monbl Augenheilkd [Internet]. 2016 Jan 20;233(06):701–7. Available from: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0042-100626 100. Wagner H, Barr JT, Zadnik K. Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study: methods and findings to date. Cont Lens Anterior Eye [Internet]. 2007 Sep;30(4):223–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17481941 101. Santodomingo-Rubido J, Carracedo G, Suzaki A, Villa-Collar C, Vincent SJ, Wolffsohn JS. Keratoconus: An updated review. Contact Lens Anterior Eye [Internet]. 2022 Jun;45(3):101559. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1367048421002058 102. Fraser CG, Fogarty Y. Interpreting laboratory results. BMJ [Internet]. 1989 Jun 24;298(6689):1659–60. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj.298.6689.1659 103. Szalai E, Berta A, Hassan Z, Módis L. Reliability and repeatability of swept source Fourier-domain optical coherence tomography and Scheimpflug imaging in keratoconus. J Cataract Refract Surg [Internet]. 2012 Mar;38(3):485–94. Available from: https://journals.lww.com/02158034- 201203000-00017 104. O’Brart DPS, Chan E, Samaras K, Patel P, Shah SP. A randomised, prospective study to investigate the efficacy of riboflavin/ultraviolet A (370 nm) corneal collagen cross-linkage to halt the progression of keratoconus. Br J Ophthalmol [Internet]. 2011 Nov 1;95(11):1519–24. Available from: https://bjo.bmj.com/lookup/doi/10.1136/bjo.2010.196493 105. Hersh PS, Greenstein SA, Fry KL. Corneal collagen crosslinking for keratoconus and corneal ectasia: One-year results. J Cataract Refract Surg [Internet]. 2011 Jan;37(1):149–60. Available from: https://journals.lww.com/02158034-201101000-00023 131 106. Gore DM, Shortt AJ, Allan BD. New clinical pathways for keratoconus. Eye [Internet]. 2013 Mar 21;27(3):329–39. Available from: https://www.nature.com/articles/eye2012257 107. A Randomized Controlled Trial of Corneal Collagen Cross-linking in Progressive Keratoconus: Preliminary Results. J Refract Surg [Internet]. 2008 Jan;24(7). Available from: https://journals.healio.com/doi/10.3928/1081597X 20080901-15 108. Santodomingo-Rubido J, Carracedo G, Suzaki A, Villa-Collar C, Vincent SJ, Wolffsohn JS. Keratoconus: An updated review. Cont Lens Anterior Eye [Internet]. 2022 Jun;45(3):101559. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34991971 109. Sahebjada S, Al-Mahrouqi HH, Moshegov S, Panchatcharam SM, Chan E, Daniell M, et al. Eye rubbing in the aetiology of keratoconus: a systematic review and meta-analysis. Graefe’s Arch Clin Exp Ophthalmol [Internet]. 2021 Aug 23;259(8):2057–67. Available from: https://link.springer.com/10.1007/s00417-021-05081-8 110. Abass A, Lopes BT, Jones S, White L, Clamp J, Elsheikh A. Non-Orthogonal Refractive Lenses for Non-Orthogonal Astigmatic Eyes. Curr Eye Res [Internet]. 2019 Jul 3;44(7):781–9. Available from: https://www.tandfonline.com/doi/full/10.1080/02713683.2019.1589523 111. Rico-Del-Viejo L, Garcia-Montero M, Hernández-Verdejo JL, García-Lázaro S, Gómez-Sanz FJ, Lorente-Velázquez A. Nonsurgical Procedures for Keratoconus Management. J Ophthalmol [Internet]. 2017;2017:1–17. Available from: https://www.hindawi.com/journals/joph/2017/9707650/ 112. Şengör T, Aydın Kurna S. Update on Contact Lens Treatment of Keratoconus. Turkish J Ophthalmol [Internet]. 2020 Aug 1;50(4):234–44. Available from: https://www.oftalmoloji.org/archives/archive-detail/article-preview/update-on contact-lens-treatment-of-keratoconus/40089 113. Ling JJ, Mian SI, Stein JD, Rahman M, Poliskey J, Woodward MA. Impact of Scleral Contact Lens Use on the Rate of Corneal Transplantation for Keratoconus. Cornea [Internet]. 2021 Jan;40(1):39–42. Available from: https://journals.lww.com/10.1097/ICO.0000000000002388 114. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a–induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol [Internet]. 2003 May;135(5):620–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002939402022201 115. Wachler BS, Jalali S, Chan CCK. C3E Corneal Collagen Crosslinking with Riboflavin. In: Wachler BS, eds. Modern management of keratoconus, New Delhi; Jaypee Brothers Medical Publisher; 2008:3;75-92. 11. 132 116. Ferrari G, Rama P. The keratoconus enigma: A review with emphasis on pathogenesis. Ocul Surf [Internet]. 2020 Jul;18(3):363–73. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1542012420300598 117. Deshmukh R, Ong ZZ, Rampat R, Alió del Barrio JL, Barua A, Ang M, et al. Management of keratoconus: an updated review. Front Med [Internet]. 2023 Jun 20;10. Available from: https://www.frontiersin.org/articles/10.3389/fmed.2023.1212314/full 118. Bui AD, Truong A, Pasricha N, Indaram M. Keratoconus Diagnosis and Treatment: Recent Advances and Future Directions. Clin Ophthalmol [Internet]. 2023 Sep;Volume 17:2705–18. Available from: https://www.dovepress.com/keratoconus-diagnosis-and-treatment-recent advances-and-future-directi-peer-reviewed-fulltext-article-OPTH 119. Atalay E, Özalp O, Yıldırım N. Advances in the diagnosis and treatment of keratoconus. Ther Adv Ophthalmol [Internet]. 2021 Jan 24;13:251584142110127. Available from: http://journals.sagepub.com/doi/10.1177/25158414211012796 120. Falgayrettes N, Patoor E, Cleymand F, Zevering Y, Perone J-M. Biomechanics of keratoconus: Two numerical studies. Riveiro Rodríguez A, editor. PLoS One [Internet]. 2023 Feb 2;18(2):e0278455. Available from: https://dx.plos.org/10.1371/journal.pone.0278455 121. D’Oria F, Bagaglia SA, Alio del Barrio JL, Alessio G, Alio JL, Mazzotta C. Refractive surgical correction and treatment of keratoconus. Surv Ophthalmol [Internet]. 2024 Jan;69(1):122–39. Available from: https://linkinghub.elsevier.com/retrieve/pii/S003962572300125X 122. Greenstein SA, Yu AS, Gelles JD, Huang S, Hersh PS. Long-Term Outcomes After Corneal Cross-linking for Progressive Keratoconus and Corneal Ectasia: A 10-Year Follow-Up of the Pivotal Study. Eye Contact Lens Sci Clin Pract [Internet]. 2023 Oct;49(10):411–6. Available from: https://journals.lww.com/10.1097/ICL.0000000000001018 123. Sedaghat M, Bagheri M, Ghavami S, Bamdad S. Changes in corneal topography and biomechanical properties after collagen cross linking for keratoconus: 1-year results. Middle East Afr J Ophthalmol [Internet]. 2015;22(2):212. Available from: https://journals.lww.com/10.4103/0974- 9233.151877 124. Kosekahya P, Turkay M, Camgoz EB, Koc M, Toker MI. Long-term evaluation of posterior corneal surface parameters after accelerated corneal cross-linking with a comparison with uncross-linked keratoconic eyes. Int Ophthalmol [Internet]. 2022 May 27;42(12):3725–38. Available from: https://link.springer.com/10.1007/s10792-022-02370-x 133 125. Kirgiz A, Eliacik M, Yildirim Y. Different accelerated corneal collagen cross linking treatment modalities in progressive keratoconus. Eye Vis [Internet]. 2019 Dec 3;6(1):16. Available from: https://eandv.biomedcentral.com/articles/10.1186/s40662-019-0141-6 126. Derakhshan A, Heravian J, Abdolahian M, Bamdad S. Long-term Outcomes of Collagen Crosslinking for Early Keratoconus. J Ophthalmic Vis Res [Internet]. 2021 Apr 29; Available from: https://knepublishing.com/index.php/JOVR/article/view/9077 127. Vinciguerra R, Bordignon N, Ferraro V, Mazzotta C, Rosetta P, Vinciguerra P. Corneal Collagen Cross-Linking for Progressive Keratoconus in Pediatric Patients: Up to 14 Years of Follow-up. Am J Ophthalmol [Internet]. 2023 Nov;255:170–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002939423002970 128. Toprak I, Yaylali V, Yildirim C. Visual, Topographic, and Pachymetric Effects of Pediatric Corneal Collagen Cross-linking. J Pediatr Ophthalmol Strabismus [Internet]. 2017 Mar;54(2):84–9. Available from: https://journals.healio.com/doi/10.3928/01913913-20160831-01 129. Çakmak S, Sucu ME, Yildirim Y, Kepez Yildiz B, Kirgiz A, Bektaşoğlu DL, et al. Complications of accelerated corneal collagen cross-linking: review of 2025 eyes. Int Ophthalmol [Internet]. 2020 Dec 26;40(12):3269–77. Available from: https://link.springer.com/10.1007/s10792-020-01512-3 130. Salman A, Ali A, Rafea S, Omran R, Kubaisi B, Ghabra M, et al. Long-term visual, anterior and posterior corneal changes after crosslinking for progressive keratoconus. Eur J Ophthalmol [Internet]. 2022 Jan 30;32(1):50– 8. Available from: http://journals.sagepub.com/doi/10.1177/11206721211052878 131. Salman A, Darwish T, Ghabra M, Kailani O, Khalil H, Shaaban R. Clinical Outcomes of Accelerated Corneal Cross-Linking for Pediatric Keratoconus. Lombardo M, editor. J Ophthalmol [Internet]. 2021 Nov 18;2021:1–9. Available from: https://www.hindawi.com/journals/joph/2021/1851883/ 132. Steinberg J, Ahmadiyar M, Rost A, Frings A, Filev F, Katz T, et al. Anterior and Posterior Corneal Changes after Crosslinking for Keratoconus. Optom Vis Sci [Internet]. 2014 Feb;91(2):178–86. Available from: https://journals.lww.com/00006324-201402000-00010 133. Gharieb HM, Othman IS, Oreaba AH, Abdelatif MK. Topographic, elevation, and keratoconus indices for diagnosis of keratoconus by a combined Placido and Scheimpflug topography system. Eur J Ophthalmol [Internet]. 2021 Jul 7;31(4):1553–62. Available from: http://journals.sagepub.com/doi/10.1177/1120672121991725 134 134. Mounir A, El Saman IS, Anbar M. The Correlation between Corneal Topographic Indices and Corneal High Order Aberrations in Keratoconus. Med hypothesis, Discov Innov Ophthalmol J [Internet]. 2019;8(1):1–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30923715 135. Büyüktortop Gökçınar N. ve Akbulut, Y. Keratokonuslu Gözlerde Kombine Scheimpflug-Placido Disk Ön Segment Analiz Sistemi Ölçümlerinin Tekrarlanabilirliği ve Güvenilirliği, MN Oftalmoloji, 2019;26(2):74-81. 136. Kandel S, Chaudhary M, Mishra SK, Joshi ND, Subedi M, Puri PR, et al. Evaluation of corneal topography, pachymetry and higher order aberrations for detecting subclinical keratoconus. Ophthalmic Physiol Opt [Internet]. 2022 May 11;42(3):594–608. Available from: https://onlinelibrary.wiley.com/doi/10.1111/opo.12956 137. Subaşı S, Yüksel N, Balcı MF, Demirci K, Pirhan D, Tuğan BY. Pediatrik Keratokonus Vakalarında Transepitelyal Cross-linking Tedavisinin Etkinliği. Kocaeli Tıp Dergisi. Aralık 2017;6(3):36-40. 138. Gilevska F, Biscevic A, Popovic Suic S, Bohac M, Patel S. Are changes in visual acuity and astigmatism after corneal cross-linking (CXL) in keratoconus predictable? Graefe’s Arch Clin Exp Ophthalmol [Internet]. 2021 Aug 22;259(8):2259–68. Available from: https://link.springer.com/10.1007/s00417-021-05173-5 139. Grewal DS, Brar GS, Jain R, Sood V, Singla M, Grewal SPS. Corneal collagen crosslinking using riboflavin and ultraviolet-A light for keratoconus. J Cataract Refract Surg [Internet]. 2009 Mar;35(3):425–32. Available from: https://journals.lww.com/02158034-200903000-00016 140. Saffarian L, Khakshoor H, Zarei-Ghanavati M, Esmaily H. Corneal crosslinking for keratoconus in Iranian patients: Outcomes at 1 year following treatment. Middle East Afr J Ophthalmol [Internet]. 2010;17(4):365. Available from: https://journals.lww.com/10.4103/0974-9233.71600 141. Safarzadeh M, Nasiri N. Anterior segment characteristics in normal and keratoconus eyes evaluated with a combined Scheimpflug/Placido corneal imaging device. J Curr Ophthalmol [Internet]. 2016 Sep;28(3):106–11. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452232516300087 142. Huang J, Liao H, Wan C, Gong L, He L, Jiang H, et al. Three‑year clinical observation of the outcomes of transepithelial and epithelial‑off accelerated corneal collagen crosslinking treatment for different types of progressive keratoconus. Exp Ther Med [Internet]. 2020 May 12;20(2):786–95. Available from: http://www.spandidos-publications.com/10.3892/etm.2020.8741 143. Berhuni M, Ozturkmen C. Comparison of accelerated corneal cross-linking for progressive keratoconus in pediatric and adult age groups: One-year results. J 135 Fr Ophtalmol [Internet]. 2022 Sep;45(7):710–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0181551222001395 144. İnan S, Çetinkaya E, Duman R, Kutluksaman B, Doğan M, Yavaş GF. Keratokonus Progresyonunun Önlenmesinde Korneal Kollajen Çapraz Bağlama Tedavisinin Etkinliği Selcuk Med J 2018;34(3): 106-111. 145. Razmjoo H, Peyman A, Rahimi A, Modrek H. Cornea Collagen Cross-linking for Keratoconus: A Comparison between Accelerated and Conventional Methods. Adv Biomed Res [Internet]. 2017;6(1):10. Available from: https://journals.lww.com/10.4103/2277-9175.200785 146. Mohebbi M, Samavat B, Mohammadi A. One-year non-comparative observational study to evaluate corneal tomographic, densitometric, and aberrometric features following accelerated corneal cross-linking in progressive keratoconus. Int Ophthalmol [Internet]. 2022 Nov 23;43(5):1721– 35. Available from: https://link.springer.com/10.1007/s10792-022-02572-3 147. Eslami M, Ghaseminejad F, Dubord PJ, Yeung SN, Iovieno A. Delayed Topographical and Refractive Changes Following Corneal Cross-Linking for Keratoconus. J Clin Med [Internet]. 2022 Mar 31;11(7):1950. Available from: https://www.mdpi.com/2077-0383/11/7/1950 148. Wang YM, Chan TCY, Yu M, Jhanji V. Shift in progression rate of keratoconus before and after epithelium-off accelerated corneal collagen crosslinking. J Cataract Refract Surg [Internet]. 2017 Jul;43(7):929–36. Available from: https://journals.lww.com/02158034-201707000-00014 149. Peyman A, Feizi A, Ganjalikhani-Hakemi M, Hosseini-Nasab F, Pourazizi M. Outcome of corneal collagen cross-linking in keratoconus: Introducing the predictive factors. J Curr Ophthalmol [Internet]. 2020;32(1):19. Available from: http://www.jcurrophthalmol.org/text.asp?2020/32/1/19/281254 150. O’Brart DPS, Patel P, Lascaratos G, Wagh VK, Tam C, Lee J, et al. Corneal Cross-linking to Halt the Progression of Keratoconus and Corneal Ectasia: Seven-Year Follow-up. Am J Ophthalmol [Internet]. 2015 Dec;160(6):1154– 63. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002939415005176 151. Doctor K, Vunnava K, Shroff R, Kaweri L, Lalgudi V, Gupta K, et al. Simplifying and understanding various topographic indices for keratoconus using Scheimpflug based topographers. Indian J Ophthalmol [Internet]. 2020;68(12):2732. Available from: https://journals.lww.com/ijo/Fulltext/2020/68120/Simplifying_and_understan ding_various_topographic.20.aspx 152. Henriquez MA, Perez L, Hernandez-Sahagun G, Rojas RP, Stulting RD, Izquierdo Jr L. Long Term Corneal Flattening After Corneal Crosslinking in Patients with Progressive Keratoconus. Clin Ophthalmol [Internet]. 2023 136 Jul;Volume 17:1865–75. Available from: https://www.dovepress.com/long term-corneal-flattening-after-corneal-crosslinking-in-patients-wi-peer reviewed-fulltext-article-OPTH 153. Arance-Gil Á, Villa-Collar C, Pérez-Sanchez B, Carracedo G, Gutiérrez Ortega R. Epithelium-Off vs. transepithelial corneal collagen crosslinking in progressive keratoconus: 3 years of follow-up. J Optom [Internet]. 2021 Apr;14(2):189–98. Available from: https://linkinghub.elsevier.com/retrieve/pii/S188842962030087X 154. Vega-Estrada A, Alio JL. Keratoconus Corneal Posterior Surface Characterization According to the Degree of Visual Limitation. Cornea [Internet]. 2019 Jun 14;38(6):730–6. Available from: https://journals.lww.com/00003226-201906000-00011 155. Bühren J, Kook D, Yoon G, Kohnen T. Detection of Subclinical Keratoconus by Using Corneal Anterior and Posterior Surface Aberrations and Thickness Spatial Profiles. Investig Opthalmology Vis Sci [Internet]. 2010 Jul 1;51(7):3424. Available from: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.09-4960tr_TR
dc.identifier.urihttps://hdl.handle.net/11655/36678
dc.description.abstractFrom the files of patients diagnosed with keratoconus who have been followed up in the Hacettepe University Department of Ophthalmology Cornea Unit for the last 10 years, the age and gender were recorded. From the Sirius topography device keratometric (curvature) values of the patients (in 3, 5 and 7 mm rings on the front and back surface of the cornea, the K1, K2, K Avg and Cyl, SimK1 and SimK2, anterior and posterior apex K values), pachymetric values (CCT, TL and AC), curvature asymmetry values (SIf, SIb), elevation-based values (KVf, KVb, rF, rS, Q, RMS, RMS/A), aberration-based values (BCV, BCVf, BCVb) before and after the CXL procedure at 1st, 4th and 6th months were recorded. It was evaluated whether there was a change in these parameters due to cross-linking treatment and how the changes on the front and back surfaces differed. IBM SPSS version 20 (Chicago, IL, USA) program was used in the evaluations and statistical significance was accepted as p<0.05. In our study, it was observed that there was a statistically significant decrease in pachymetric values (CCT, TL and AC) in the 6th month post-op compared to pre-op. Curvature asymmetry values (SIf, SIb) were found to be lower at the 6th month post op than pre-op on the anterior surface, while no significant difference was detected on the posterior surface. Keratometric (curvature) values K1, K2, K Avg and anterior and posterior apex K values were found to increase in mm (decrease in diopters) on the front surface at the 6th month compared to pre-op, while on the back surface, on the contrary, there was a decrease in mm (increase in diopters) compared to pre-op. It was observed that the SimK1 value was higher in mm in the 6th month postoperatively compared to preop, and the SimK2 value was higher in mm in the 1st month postoperatively compared to preop. It was observed that the KVf anterior surface value was lower in the post-operative 6th month compared to the pre-op, and the KVb posterior surface value was higher in the post-operative 6th month compared to the pre-op. Elevation-based values (rF, RMS, RMS/A) measured on a spherical v surface showed that the rF value in mm was higher on the anterior surface and lower on the posterior surface in the 6th month post-op compared to pre-op; RMS and RMS/A values were observed to be lower on the anterior surface and higher on the posterior surface at the 6th month post-op compared to pre-op. Among the elevation based values (rF, Q, RMS, RMS/A) based on the aspheric surface, it was observed that there was no significant difference in the rF value on the anterior and posterior surfaces at the 6th month post-op compared to the pre-op. It was determined that the Q value was lower on the anterior surface and higher on the posterior surface at the 6th month post-op compared to pre-op. It was observed that RMS and RMS/A values were significantly lower at the 6th month post-op compared to pre-op on the anterior surface, but they did not show a significant difference on the posterior surface. When the elevation-based values (rF, rS, Q, RMS, RMS/A) were examined based on the aspherotoric surface, it was determined that the rF and rS values in mm were higher on the anterior surface and lower on the posterior surface in the 6th month post-op compared to the pre-op. Q, RMS and RMS/A values were found to be lower on the anterior surface and higher on the posterior surface at the 6th month post-op compared to pre-op. It was found that the peripheral Q value was significantly higher on the front surface in the 1st month post-op than in the pre-op, but did not show a significant difference in the 6th month. BCVf value, one of the aberration-based values, was found to be lower on the anterior surface at the 6th month post-op than pre-op. It was determined that BCVb (back surface) and BCV total values did not show a significant difference at the 6th month post-op compared to the pre-op. The results obtained in the study show that although significant results were obtained on the anterior surface after the corneal cross-linking method in keratoconus patients, the disease continues to progress on the posterior surface and the treatment is not effective. Therefore, it may be recommended to examine the reason for these results regarding the posterior surface and to regularly monitor not only the anterior surface but also the posterior surface of patients in clinical practice. Although the time period examined in the study is generally sufficient for an effect to emerge in clinical studies, longer-term observations can be made. However, during this period, treatment measures must be taken to address the progression of the disease on the posterior surface.tr_TR
dc.language.isoturtr_TR
dc.publisherTıp Fakültesitr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectKorneal Çapraz Bağlamatr_TR
dc.subjectKorneal Topografitr_TR
dc.subjectKeratokonustr_TR
dc.subject.lcshOftalmolojitr_TR
dc.titleKERATOKONUS HASTALARINDA KORNEAL ÇAPRAZ BAĞLAMAYA BAĞLI DEĞİŞİMİN SANTRAL KORNEA KALINLIĞI VE KORNEA PARAMETRELERİ İLE İLİŞKİSİtr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetHacettepe Üniversitesi Göz Hastalıkları Anabilim Dalı Kornea Birimi’nde son 10 yıldır takipli keratokonus tanılı hastaların dosyalarından hastalara ait yaş, cinsiyet ve CXL öncesi ve sonrası 1., 4. ve 6. Ayda Sirius topografi cihazında kayıtlı keratometrik (kurvatür) değerleri (korneanın ön ve arka yüzeyinde 3,5 ve 7 mm’lik halkalarda K1, K2, K Avg ve Cyl, SimK1 ve SimK2, ön ve arka apeks K değeri), pakimetrik değerler (SKK, EİY ve AK), kurvatür asimetrisi değerleri (SIf, SIb), elevasyon bazlı değerler (KVf, KVb, rF, rS, Q, RMS, RMS/A), aberasyon bazlı değerler (BCV, BCVf, BCVb) kaydedilerek bu parametrelerde çapraz bağlama tedavisine bağlı bir değişiklik olup olmadığının ve ön ve arka yüzeyde değişikliklerin nasıl bir farklılık gösterdiğinin değerlendirilmesi yapıldı. Değerlendirmelerde IBM SPSS versiyon 20 (Chicago, IL, USA) programı kullanıldı ve istatiksel anlamlılık p<0,05 olarak kabul edildi. Çalışmamızda pakimetrik değerlerde (SKK, EİY ve AK) post-op 6. ayda pre-opa göre istatiksel olarak anlamlı azalma olduğu görüldü. Kurvatür asimetrisi değerleri (SIf, SIb) ön yüzeyde pre-opa göre post-op 6. ayda daha düşük saptanırken arka yüzeyde anlamlı fark saptanmadı. Keratometrik (kurvatür) değerlerinden K1,K2, K Avg ile ön ve arka apeks K değerlerinin pre-opa göre ön yüzeyde 6. ayda mm cinsinde artma (diyoptri cinsinde azalma) saptanırken arka yüzeyde pre-opa göre tam tersi olarak mm cinsinde azalma (diyoptri cinsinde artma) olduğu görüldü. SimK1 değerinin preopa göre postop 6. Ayda mm cinsinde daha yüksek olduğu, SimK2 değerinin preopa göre postop 1. ayda mm cinsinde daha yüksek olduğu görüldü. KVf ön yüzey değerinin pre-opa göre post-op 6. ayda daha düşük, KVb arka yüzey değerinin ise pre-opa göre post-op 6. ayda daha yüksek olduğu görüldü. Sferik yüzey baz alınarak bakılan elevasyon bazlı değerler (rF, RMS, RMS/A) mm cinsinde rF değerinin pre-opa göre post-op 6. ayda ön yüzeyde daha yüksek, arka yüzeyde daha iii düşük olduğu; RMS ve RMS/A değerlerinin ise pre-opa göre post-op 6. ayda ön yüzeyde daha düşük, arka yüzeyde ise daha yüksek olduğu görüldü. Asferik yüzey baz alınarak bakılan elevasyon bazlı değerlerden (rF, Q, RMS, RMS/A) rF değerinde pre-opa göre post-op 6. ayda ön ve arka yüzeyde anlamlı bir fark olmadığı görüldü. Q değerinin pre-opa göre post-op 6. ayda ön yüzeyde daha düşük, arka yüzeyde daha yüksek olduğu saptandı. RMS ve RMS/A değerinin ön yüzeyde pre-opa göre post-op 6. ayda anlamlı olarak düşük olduğu , arka yüzeyde ise anlamlı bir farklılık göstermedikleri görüldü. Asferotorik yüzey baz alınarak bakılan elevasyon bazlı değerler ( rF, rS, Q, RMS, RMS/A) incelendiğinde rF ve rS değerinin mm cinsinde pre-opa göre post-op 6. ayda ön yüzeyde daha yüksek, arka yüzeyde ise daha düşük olduğu saptandı. Q, RMS ve RMS/A değerlerinin pre-opa göre post-op 6. ayda ön yüzeyde daha düşük, arka yüzeyde ise daha yüksek olduğu saptandı. Periferik Q değerinin pre-opa göre post-op 1. ayda ön yüzeyde anlamlı olarak daha yüksek olduğu ancak 6. ayda anlamlı bir fark göstermediği saptandı. Periferik Q değerinin pre-opa göre post-op 4. ayda arka yüzeyde anlamlı olarak daha yüksek olduğu ancak 6. ayda anlamlı bir fark göstermediği saptandı. Aberasyon bazlı değerlerden BCVf değerinin ön yüzeyde pre-opa göre post-op 6. ayda daha düşük olduğu saptandı. BCVb (arka yüzey) ve BCV total değerlerinin ise pre-opa göre post-op 6. ayda anlamlı bir farklılık göstermediği saptandı. Araştırmada elde edilen sonuçlar, keratokonus hastalarında korneal çapraz bağlama yöntemi sonrasında her ne kadar ön yüzeyde anlamlı sonuçlar elde edilse de, arka yüzeyde hastalığın ilerlemesinin devam ettiğini, tedavinin etkili olmadığını göstermektedir. Dolayısıyla, arka yüzeye yönelik bu sonuçların sebebinin incelenmesi, klinik uygulamalarda hastalarda sadece ön yüzey değil, arka yüzeyin de düzenli olarak takip edilmesi önerilebilir. Araştırmada incelenen zaman dilimi genel olarak klinik araştırmalarda bir etkinin ortaya çıkmasına yeterli süre olsa da, daha uzun süreli gözlemler yapılabilir. Ancak bu süre içerisinde, hastalığın arka yüzeydeki ilerlemesine yönelik tedavi önlemlerinin de alınması gerekir.tr_TR
dc.contributor.departmentGöz Hastalıklarıtr_TR
dc.embargo.terms6 aytr_TR
dc.embargo.lift2025-09-12T08:42:15Z
dc.fundingYoktr_TR
dc.subtypemedicineThesistr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record