Özet
From the files of patients diagnosed with keratoconus who have been followed up in
the Hacettepe University Department of Ophthalmology Cornea Unit for the last 10
years, the age and gender were recorded. From the Sirius topography device
keratometric (curvature) values of the patients (in 3, 5 and 7 mm rings on the front
and back surface of the cornea, the K1, K2, K Avg and Cyl, SimK1 and SimK2,
anterior and posterior apex K values), pachymetric values (CCT, TL and AC),
curvature asymmetry values (SIf, SIb), elevation-based values (KVf, KVb, rF, rS, Q,
RMS, RMS/A), aberration-based values (BCV, BCVf, BCVb) before and after the
CXL procedure at 1st, 4th and 6th months were recorded. It was evaluated whether
there was a change in these parameters due to cross-linking treatment and how the
changes on the front and back surfaces differed. IBM SPSS version 20 (Chicago, IL,
USA) program was used in the evaluations and statistical significance was accepted
as p<0.05.
In our study, it was observed that there was a statistically significant decrease in
pachymetric values (CCT, TL and AC) in the 6th month post-op compared to pre-op.
Curvature asymmetry values (SIf, SIb) were found to be lower at the 6th month post op than pre-op on the anterior surface, while no significant difference was detected
on the posterior surface. Keratometric (curvature) values K1, K2, K Avg and anterior
and posterior apex K values were found to increase in mm (decrease in diopters) on
the front surface at the 6th month compared to pre-op, while on the back surface, on
the contrary, there was a decrease in mm (increase in diopters) compared to pre-op. It
was observed that the SimK1 value was higher in mm in the 6th month
postoperatively compared to preop, and the SimK2 value was higher in mm in the 1st
month postoperatively compared to preop. It was observed that the KVf anterior
surface value was lower in the post-operative 6th month compared to the pre-op, and
the KVb posterior surface value was higher in the post-operative 6th month compared
to the pre-op. Elevation-based values (rF, RMS, RMS/A) measured on a spherical
v
surface showed that the rF value in mm was higher on the anterior surface and lower
on the posterior surface in the 6th month post-op compared to pre-op; RMS and
RMS/A values were observed to be lower on the anterior surface and higher on the
posterior surface at the 6th month post-op compared to pre-op. Among the elevation based values (rF, Q, RMS, RMS/A) based on the aspheric surface, it was observed
that there was no significant difference in the rF value on the anterior and posterior
surfaces at the 6th month post-op compared to the pre-op. It was determined that the
Q value was lower on the anterior surface and higher on the posterior surface at the
6th month post-op compared to pre-op. It was observed that RMS and RMS/A values
were significantly lower at the 6th month post-op compared to pre-op on the anterior
surface, but they did not show a significant difference on the posterior surface. When
the elevation-based values (rF, rS, Q, RMS, RMS/A) were examined based on the
aspherotoric surface, it was determined that the rF and rS values in mm were higher
on the anterior surface and lower on the posterior surface in the 6th month post-op
compared to the pre-op. Q, RMS and RMS/A values were found to be lower on the
anterior surface and higher on the posterior surface at the 6th month post-op
compared to pre-op. It was found that the peripheral Q value was significantly higher
on the front surface in the 1st month post-op than in the pre-op, but did not show a
significant difference in the 6th month. BCVf value, one of the aberration-based
values, was found to be lower on the anterior surface at the 6th month post-op than
pre-op. It was determined that BCVb (back surface) and BCV total values did not
show a significant difference at the 6th month post-op compared to the pre-op.
The results obtained in the study show that although significant results were obtained
on the anterior surface after the corneal cross-linking method in keratoconus patients,
the disease continues to progress on the posterior surface and the treatment is not
effective. Therefore, it may be recommended to examine the reason for these results
regarding the posterior surface and to regularly monitor not only the anterior surface
but also the posterior surface of patients in clinical practice. Although the time period
examined in the study is generally sufficient for an effect to emerge in clinical
studies, longer-term observations can be made. However, during this period,
treatment measures must be taken to address the progression of the disease on the
posterior surface.
Künye
1. Li X. Longitudinal study of the normal eyes in unilateral keratoconus patients.
Ophthalmology [Internet]. 2004 Mar;111(3):440–6. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0161642003014970
2. Romero-Jiménez M, Santodomingo-Rubido J, González-Méijome J-M. The
Thinnest, Steepest, and Maximum Elevation Corneal Locations in Noncontact
and Contact Lens Wearers in Keratoconus. Cornea [Internet]. 2013
Mar;32(3):332–7. Available from: https://journals.lww.com/00003226-
201303000-00019
3. Krachmer JH, Feder RS, Belin MW. Keratoconus and related
noninflammatory corneal thinning disorders. Surv Ophthalmol [Internet]. 1984
Jan;28(4):293–322. Available from:
https://linkinghub.elsevier.com/retrieve/pii/0039625784900948
4. Wisse RPL, Kuiper JJW, Gans R, Imhof S, Radstake TRDJ, Van der Lelij A.
Cytokine Expression in Keratoconus and its Corneal Microenvironment: A
Systematic Review. Ocul Surf [Internet]. 2015 Oct;13(4):272–83. Available
from: https://linkinghub.elsevier.com/retrieve/pii/S1542012415000531
5. Galvis V, Sherwin T, Tello A, Merayo J, Barrera R, Acera A. Keratoconus: an
inflammatory disorder? Eye [Internet]. 2015 Jul 1;29(7):843–59. Available
from: https://www.nature.com/articles/eye201563
6. Nichols JJ. The relation between disease asymmetry and severity in
keratoconus. Br J Ophthalmol [Internet]. 2004 Jun 1;88(6):788–91. Available
from: https://bjo.bmj.com/lookup/doi/10.1136/bjo.2003.034520
7. Rabinowitz YS. Keratoconus. Surv Ophthalmol [Internet]. 1998
Jan;42(4):297–319. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0039625797001197
8. Flockerzi E, Xanthopoulou K, Goebels SC, Zemova E, Razafimino S, Hamon
L, et al. Keratoconus staging by decades: a baseline ABCD classification of
1000 patients in the Homburg Keratoconus Center. Br J Ophthalmol
[Internet]. 2021 Aug;105(8):1069–75. Available from:
https://bjo.bmj.com/lookup/doi/10.1136/bjophthalmol-2020-316789
9. Özalp O, Atalay E, Yıldırım N. Prevalence and risk factors for keratoconus in
a university-based population in Turkey. J Cataract Refract Surg [Internet].
2021 Dec;47(12):1524–9. Available from:
https://journals.lww.com/10.1097/j.jcrs.0000000000000669
10. Khaled ML, Helwa I, Drewry M, Seremwe M, Estes A, Liu Y. Molecular and
Histopathological Changes Associated with Keratoconus. Biomed Res Int
121
[Internet]. 2017;2017:1–16. Available from:
https://www.hindawi.com/journals/bmri/2017/7803029/
11. Brookes NH, Loh I-P, Clover GM, Poole CA, Sherwin T. Involvement of
corneal nerves in the progression of keratoconus. Exp Eye Res [Internet]. 2003
Oct;77(4):515–24. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0014483503001489
12. Mathan JJ, Gokul A, Simkin SK, Meyer JJ, Patel D V., McGhee CNJ.
Topographic screening reveals keratoconus to be extremely common in Down
syndrome. Clin Experiment Ophthalmol [Internet]. 2020 Dec 8;48(9):1160–7.
Available from: https://onlinelibrary.wiley.com/doi/10.1111/ceo.13852
13. Elder MJ. Leber Congenital Amaurosis and Its Association With Keratoconus
and Keratoglobus. J Pediatr Ophthalmol Strabismus [Internet]. 1994
Jan;31(1):38–40. Available from:
https://journals.healio.com/doi/10.3928/0191-3913-19940101-08
14. Robertson I. KERATOCONUS AND THE EHLERS.DANLOS
SYNDROME: A NEW ASPECT OF KERATOCONUS. Med J Aust
[Internet]. 1975 May 3;1(18):571–3. Available from:
https://onlinelibrary.wiley.com/doi/abs/10.5694/j.1326-5377.1975.tb111590.x
15. Lee A, Sakhalkar M. Ocular manifestations of Noonan syndrome in twin
siblings: A case report of keratoconus with acute corneal hydrops. Indian J
Ophthalmol [Internet]. 2014;62(12):1171. Available from:
http://www.ijo.in/text.asp?2014/62/12/1171/126992
16. Rabinowitz YS, Galvis V, Tello A, Rueda D, García JD. Genetics vs chronic
corneal mechanical trauma in the etiology of keratoconus. Exp Eye Res
[Internet]. 2021 Jan;202:108328. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0014483520305868
17. Tuft SJ, Hassan H, George S, Frazer DG, Willoughby CE, Liskova P.
Keratoconus in 18 pairs of twins. Acta Ophthalmol [Internet]. 2012
Sep;90(6):e482–6. Available from:
https://onlinelibrary.wiley.com/doi/10.1111/j.1755-3768.2012.02448.x
18. Wang Y, Rabinowitz YS, Rotter JI, Yang H. Genetic epidemiological study of
keratoconus: Evidence for major gene determination. Am J Med Genet
[Internet]. 2000 Aug 28;93(5):403–9. Available from:
https://onlinelibrary.wiley.com/doi/10.1002/1096-
8628(20000828)93:5%3C403::AID-AJMG11%3E3.0.CO;2-A
19. Gonzalez V. Computer-Assisted Corneal Topography in Parents of Patients
With Keratoconus. Arch Ophthalmol [Internet]. 1992 Oct 1;110(10):1412.
Available from:
http://archopht.jamanetwork.com/article.aspx?doi=10.1001/archopht.1992.010
80220074024
122
20. Kriszt Á, Losonczy G, Berta A, Vereb G, Takács L. Segregation analysis
suggests that keratoconus is a complex non-mendelian disease. Acta
Ophthalmol [Internet]. 2014 Nov;92(7):e562–8. Available from:
https://onlinelibrary.wiley.com/doi/10.1111/aos.12389
21. Chen S, Li X-Y, Jin J-J, Shen R-J, Mao J-Y, Cheng F-F, et al. Genetic
Screening Revealed Latent Keratoconus in Asymptomatic Individuals. Front
Cell Dev Biol [Internet]. 2021 May 31;9. Available from:
https://www.frontiersin.org/articles/10.3389/fcell.2021.650344/full
22. Bykhovskaya Y, Rabinowitz YS. Update on the genetics of keratoconus. Exp
Eye Res [Internet]. 2021 Jan;202:108398. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0014483520306564
23. Bykhovskaya Y, Li X, Taylor KD, Haritunians T, Rotter JI, Rabinowitz YS.
Linkage Analysis of High-density SNPs Confirms Keratoconus Locus at 5q
Chromosomal Region. Ophthalmic Genet [Internet]. 2014 Feb 20;1–2.
Available from:
http://www.tandfonline.com/doi/full/10.3109/13816810.2014.889172
24. Mas Tur V, MacGregor C, Jayaswal R, O’Brart D, Maycock N. A review of
keratoconus: Diagnosis, pathophysiology, and genetics. Surv Ophthalmol
[Internet]. 2017 Nov;62(6):770–83. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0039625717300462
25. Cristina Kenney M, Brown DJ. The Cascade Hypothesis of Keratoconus.
Contact Lens Anterior Eye [Internet]. 2003 Sep;26(3):139–46. Available
from: https://linkinghub.elsevier.com/retrieve/pii/S1367048403000225
26. Loukovitis E, Kozeis N, Gatzioufas Z, Kozei A, Tsotridou E, Stoila M, et al.
The Proteins of Keratoconus: a Literature Review Exploring Their
Contribution to the Pathophysiology of the Disease. Adv Ther [Internet]. 2019
Sep 30;36(9):2205–22. Available from:
http://link.springer.com/10.1007/s12325-019-01026-0
27. Yam GH-F, Fuest M, Zhou L, Liu Y-C, Deng L, Chan AS-Y, et al.
Differential epithelial and stromal protein profiles in cone and non-cone
regions of keratoconus corneas. Sci Rep [Internet]. 2019 Feb 27;9(1):2965.
Available from: https://www.nature.com/articles/s41598-019-39182-6
28. Navel V, Malecaze J, Pereira B, Baker JS, Malecaze F, Sapin V, et al.
Oxidative and antioxidative stress markers in keratoconus: a systematic review
and meta-analysis. Acta Ophthalmol [Internet]. 2021 Sep 23;99(6). Available
from: https://onlinelibrary.wiley.com/doi/10.1111/aos.14714
29. Balasubramanian SA, Pye DC, Willcox MDP. Are Proteinases the Reason for
Keratoconus? Curr Eye Res [Internet]. 2010 Mar 7;35(3):185–91. Available
from: http://www.tandfonline.com/doi/full/10.3109/02713680903477824
123
30. Sherwin T, Brookes NH, Loh I-P, Poole CA, Clover GM. Cellular Incursion
into Bowman’s Membrane in the Peripheral Cone of the Keratoconic Cornea.
Exp Eye Res [Internet]. 2002 Apr;74(4):473–82. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0014483501911571
31. Alkanaan A, Barsotti R, Kirat O, Khan A, Almubrad T, Akhtar S. Collagen
fibrils and proteoglycans of peripheral and central stroma of the keratoconus
cornea - Ultrastructure and 3D transmission electron tomography. Sci Rep
[Internet]. 2019 Dec 27;9(1):19963. Available from:
https://www.nature.com/articles/s41598-019-56529-1
32. Abdul-Maksoud RS, Fouad RA, Elsayed TG, Ibrahem RA, Badawi AE. The
impact of catalase and glutathione peroxidase-1 genetic polymorphisms on
their enzyme activities among Egyptian patients with keratoconus. J Gene
Med [Internet]. 2020 Aug 7;22(8). Available from:
https://onlinelibrary.wiley.com/doi/10.1002/jgm.3192
33. Gondhowiardjo TD, van Haeringen NJ. Corneal Aldehyde Dehydrogenase,
Glutathione Reductase, and Glutathione S-Transferase in Pathologic Corneas.
Cornea [Internet]. 1993 Jul;12(4):310–4. Available from:
http://journals.lww.com/00003226-199307000-00006
34. Göncü T, Akal A, Adbelli FM, Çakmak S, Sezen H, Ylmaz ÖF. Tear Film and
Serum Prolidase Activity and Oxidative Stress in Patients With Keratoconus.
Cornea [Internet]. 2015 Sep;34(9):1019–23. Available from:
https://journals.lww.com/00003226-201509000-00005
35. Amit C, Padmanabhan P, Elchuri S V., Narayanan J. Probing the effect of
matrix stiffness in endocytic signalling pathway of corneal epithelium.
Biochem Biophys Res Commun [Internet]. 2020 Apr;525(2):280–5. Available
from: https://linkinghub.elsevier.com/retrieve/pii/S0006291X20303351
36. Gasset AR, Houde WL, Garcia-Bengochea M. Hard Contact Lens Wear as an
Environmental Risk in Keratoconus. Am J Ophthalmol [Internet]. 1978
Mar;85(3):339–41. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0002939414777256
37. Ahuja P, Dadachanji Z, Shetty R, Nagarajan S, Khamar P, Sethu S, et al.
Relevance of IgE, allergy and eye rubbing in the pathogenesis and
management of Keratoconus. Indian J Ophthalmol [Internet].
2020;68(10):2067. Available from:
https://journals.lww.com/ijo/Fulltext/2020/68100/Relevance_of_IgE,_allergy_
and_eye_rubbing_in_the.6.aspx
38. Hashemi H, Heydarian S, Hooshmand E, Saatchi M, Yekta A, Aghamirsalim
M, et al. The Prevalence and Risk Factors for Keratoconus: A Systematic
Review and Meta-Analysis. Cornea [Internet]. 2020 Feb;39(2):263–70.
Available from: https://journals.lww.com/10.1097/ICO.0000000000002150
124
39. Kemp EG, Lewis CJ. Immunoglobulin patterns in keratoconus with particular
reference to total and specific IgE levels. Br J Ophthalmol [Internet]. 1982
Nov 1;66(11):717–20. Available from:
https://bjo.bmj.com/lookup/doi/10.1136/bjo.66.11.717
40. Claessens JLJ, Godefrooij DA, Vink G, Frank LE, Wisse RPL. Nationwide
epidemiological approach to identify associations between keratoconus and
immune-mediated diseases. Br J Ophthalmol [Internet]. 2022
Oct;106(10):1350–4. Available from:
https://bjo.bmj.com/lookup/doi/10.1136/bjophthalmol-2021-318804
41. Valdez-García JE, Sepúlveda R, Salazar-Martínez JJ, Lozano-Ramírez JF.
Prevalence of keratoconus in an adolescent population. Rev Mex Oftalmol
[Internet]. 2014 Jul;88(3):95–8. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S0187451914000316
42. Jonas JB, Nangia V, Matin A, Kulkarni M, Bhojwani K. Prevalence and
Associations of Keratoconus in Rural Maharashtra in Central India: The
Central India Eye and Medical Study. Am J Ophthalmol [Internet]. 2009
Nov;148(5):760–5. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0002939409004590
43. Henriquez MA, Hadid M, Izquierdo L. A Systematic Review of Subclinical
Keratoconus and Forme Fruste Keratoconus. J Refract Surg [Internet]. 2020
Apr;36(4):270–9. Available from:
https://journals.healio.com/doi/10.3928/1081597X-20200212-03
44. Toprak I, Vega A, Alió del Barrio JL, Espla E, Cavas F, Alió JL. Diagnostic
Value of Corneal Epithelial and Stromal Thickness Distribution Profiles in
Forme Fruste Keratoconus and Subclinical Keratoconus. Cornea [Internet].
2021 Jan;40(1):61–72. Available from:
https://journals.lww.com/10.1097/ICO.0000000000002435
45. Toprak I, Cavas F, Velázquez JS, Alio del Barrio JL, Alio JL. Subclinical
keratoconus detection with three-dimensional (3-D) morphogeometric and
volumetric analysis. Acta Ophthalmol [Internet]. 2020 Dec 15;98(8).
Available from: https://onlinelibrary.wiley.com/doi/10.1111/aos.14433
46. Weed KH, McGhee CNJ, MacEwen CJ. Atypical unilateral superior
keratoconus in young males. Contact Lens Anterior Eye [Internet]. 2005
Dec;28(4):177–9. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S1367048405000810
47. Rafati S, Hashemi H, Nabovati P, Doostdar A, Yekta A, Aghamirsalim M, et
al. Demographic profile, clinical, and topographic characteristics of
keratoconus patients attending at a tertiary eye center. J Curr Ophthalmol
[Internet]. 2019 Sep;31(3):268–74. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S2452232518302348
125
48. Naderan M, Jahanrad A, Farjadnia M. Clinical biomicroscopy and retinoscopy
findings of keratoconus in a Middle Eastern population. Clin Exp Optom
[Internet]. 2018 Jan 1;101(1):46–51. Available from:
https://www.tandfonline.com/doi/full/10.1111/cxo.12579
49. Bühren J. Keratoconus. In: Encyclopedia of Ophthalmology [Internet]. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2016. p. 1–3. Available from:
https://link.springer.com/10.1007/978-3-642-35951-4_439-4
50. Kennedy RH, Bourne WM, Dyer JA. A 48-Year Clinical and Epidemiologic
Study of Keratoconus. Am J Ophthalmol [Internet]. 1986 Mar;101(3):267–73.
Available from:
https://linkinghub.elsevier.com/retrieve/pii/0002939486908172
51. Zadnik K, Barr JT, Gordon MO, Edrington TB. Biomicroscopic Signs and
Disease Severity in Keratoconus. Cornea [Internet]. 1996 Mar;15(2):139–46.
Available from: http://journals.lww.com/00003226-199603000-00006
52. Barr JT, Wilson BS, Gordon MO, Rah MJ, Riley C, Kollbaum PS, et al.
Estimation of the Incidence and Factors Predictive of Corneal Scarring in the
Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study. Cornea
[Internet]. 2006 Jan;25(1):16–25. Available from:
https://journals.lww.com/00003226-200601000-00003
53. Gold J, Chauhan V, Rojanasthien S, Fitzgerald J. Munson’s Sign: An Obvious
Finding to Explain Acute Vision Loss. Clin Pract Cases Emerg Med [Internet].
2019 Jul 8;3(3):312–3. Available from:
https://escholarship.org/uc/item/5bv7k846
54. Rizzuti AB. Diagnostic Illumination Test for Keratoconus. Am J Ophthalmol
[Internet]. 1970 Jul;70(1):141–3. Available from:
https://linkinghub.elsevier.com/retrieve/pii/0002939470906811
55. Kumar M, Shetty R, Lalgudi VG, Khamar P, Vincent SJ. Scleral Lens Visual
Rehabilitation of Sequential Bilateral Corneal Hydrops With Post-LASIK
Ectasia. Eye Contact Lens Sci Clin Pract [Internet]. 2021 Jul;47(7):429–31.
Available from: https://journals.lww.com/10.1097/ICL.0000000000000766
56. Kreps EO, Claerhout I, Koppen C. The Outcome of Scleral Lens Fitting for
Keratoconus With Resolved Corneal Hydrops. Cornea [Internet]. 2019 Jul
4;38(7):855–8. Available from: https://journals.lww.com/00003226-
201907000-00011
57. Fan Gaskin JC, Patel D V., McGhee CNJ. Acute Corneal Hydrops in
Keratoconus—New Perspectives. Am J Ophthalmol [Internet]. 2014
May;157(5):921-928.e1. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0002939414000476
126
58. Barsam A, Brennan N, Petrushkin H, Xing W, Quartilho A, Bunce C, et al.
Case-control study of risk factors for acute corneal hydrops in keratoconus. Br
J Ophthalmol [Internet]. 2017 Apr;101(4):499–502. Available from:
https://bjo.bmj.com/lookup/doi/10.1136/bjophthalmol-2015-308251
59. Martínez-Abad A, Piñero DP. New perspectives on the detection and
progression of keratoconus. J Cataract Refract Surg [Internet]. 2017
Sep;43(9):1213–27. Available from: https://journals.lww.com/02158034-
201709000-00015
60. Kanclerz P, Khoramnia R, Wang X. Current Developments in Corneal
Topography and Tomography. Diagnostics [Internet]. 2021 Aug
13;11(8):1466. Available from: https://www.mdpi.com/2075-4418/11/8/1466
61. Klyce SD. Chasing the suspect: keratoconus. Br J Ophthalmol [Internet]. 2009
Jul 1;93(7):845–7. Available from:
https://bjo.bmj.com/lookup/doi/10.1136/bjo.2008.147371
62. Gomes JAP, Tan D, Rapuano CJ, Belin MW, Ambrósio R, Guell JL, et al.
Global Consensus on Keratoconus and Ectatic Diseases. Cornea [Internet].
2015 Apr;34(4):359–69. Available from: https://journals.lww.com/00003226-
201504000-00001
63. Pratik Kornea Topografi,Prof. Dr. Özge Saraç, Editor, Anadolu Kitabevi,
Ankara, pp. 15-16.
64. Sinjab MM. Keratokonus ve Keratektazilerin Sınıflandırılması ve Desenleri.
Çeviri: Özge Saraç, Seher Uysal. Keratokonus Tedavisine Pratik Yaklaşım.
Çeviri Editörü: Nurullah Çağıl. Springer - Verlag Berlin Heidelberg; 2012,
s27-58.
65. Rabinowitz YS. Videokeratographic Indices to Aid in Screening for
Keratoconus. J Refract Surg [Internet]. 1995 Sep;11(5):371–406. Available
from: https://journals.healio.com/doi/10.3928/1081-597X-19950901-14
66. Hashemi H, Mehravaran S. Day to Day Clinically Relevant Corneal Elevation,
Thickness, and Curvature Parameters Using the Orbscan II Scanning Slit
Topographer and the Pentacam Scheimpflug Imaging Device. Middle East Afr
J Ophthalmol [Internet]. 2010 Jan;17(1):44–55. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/20543936
67. Reinstein DZ, Archer TJ, Gobbe M. Corneal Epithelial Thickness Profile in
the Diagnosis of Keratoconus. J Refract Surg [Internet]. 2009 Jul;25(7):604–
10. Available from: https://journals.healio.com/doi/10.3928/1081597X 20090610-06
68. Sawaguchi S. Three-Dimensional Scanning Electron Microscopic Study of
Keratoconus Corneas. Arch Ophthalmol [Internet]. 1998 Jan 1;116(1):62.
127
Available from:
http://archopht.jamanetwork.com/article.aspx?doi=10.1001/archopht.116.1.62
69. Xu Z, Jiang J, Yang C, Huang S, Peng M, Li W, et al. Value of corneal
epithelial and Bowman’s layer vertical thickness profiles generated by UHR OCT for sub-clinical keratoconus diagnosis. Sci Rep [Internet]. 2016 Aug
11;6(1):31550. Available from: https://www.nature.com/articles/srep31550
70. Li Y, Chamberlain W, Tan O, Brass R, Weiss JL, Huang D. Subclinical
keratoconus detection by pattern analysis of corneal and epithelial thickness
maps with optical coherence tomography. J Cataract Refract Surg [Internet].
2016 Feb;42(2):284–95. Available from: https://journals.lww.com/02158034-
201602000-00016
71. Li Y, Tan O, Brass R, Weiss JL, Huang D. Corneal Epithelial Thickness
Mapping by Fourier-Domain Optical Coherence Tomography in Normal and
Keratoconic Eyes. Ophthalmology [Internet]. 2012 Dec;119(12):2425–33.
Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0161642012005544
72. Yang Y, Pavlatos E, Chamberlain W, Huang D, Li Y. Keratoconus detection
using OCT corneal and epithelial thickness map parameters and patterns. J
Cataract Refract Surg [Internet]. 2021 Jun;47(6):759–66. Available from:
https://journals.lww.com/10.1097/j.jcrs.0000000000000498
73. Belin MW, Khachikian SS. An introduction to understanding elevation-based
topography: how elevation data are displayed - a review. Clin Experiment
Ophthalmol [Internet]. 2009 Jan;37(1):14–29. Available from:
https://onlinelibrary.wiley.com/doi/10.1111/j.1442-9071.2008.01821.x
74. Cavas-Martínez F, Fernández-Pacheco DG, De la Cruz-Sánchez E, Nieto
Martínez J, Fernández Cañavate FJ, Vega-Estrada A, et al. Geometrical
Custom Modeling of Human Cornea In Vivo and Its Use for the Diagnosis of
Corneal Ectasia. Ljubimov A V., editor. PLoS One [Internet]. 2014 Oct
17;9(10):e110249. Available from:
https://dx.plos.org/10.1371/journal.pone.0110249
75. Itoi M, Kitazawa K, Yokota I, Wakimasu K, Cho Y, Nakamura Y, et al.
Anterior and posterior ratio of corneal surface areas: A novel index for
detecting early stage keratoconus. Liu Y-C, editor. PLoS One [Internet]. 2020
Apr 2;15(4):e0231074. Available from:
https://dx.plos.org/10.1371/journal.pone.0231074
76. Consejo A, Alonso-Caneiro D, Wojtkowski M, Vincent SJ. Corneal tissue
properties following scleral lens wear using Scheimpflug imaging. Ophthalmic
Physiol Opt [Internet]. 2020 Sep 23;40(5):595–606. Available from:
https://onlinelibrary.wiley.com/doi/10.1111/opo.12710
128
77. Consejo A, Glawdecka K, Karnowski K, Solarski J, Rozema JJ, Wojtkowski
M, et al. Corneal Properties of Keratoconus Based on Scheimpflug Light
Intensity Distribution. Investig Opthalmology Vis Sci [Internet]. 2019 Jul
23;60(8):3197. Available from:
https://iovs.arvojournals.org/article.aspx?articleid=2739386
78. Consejo A, Solarski J, Karnowski K, Rozema JJ, Wojtkowski M, Iskander
DR. Keratoconus Detection Based on a Single Scheimpflug Image. Transl Vis
Sci Technol [Internet]. 2020 Jun 26;9(7):36. Available from:
https://tvst.arvojournals.org/article.aspx?articleid=2770210
79. Jiménez-García M, Ní Dhubhghaill S, Consejo A, Hershko S, Koppen C,
Rozema JJ. Scheimpflug Densitometry in Keratoconus: A New Method of
Visualizing the Cone. Cornea [Internet]. 2021 Feb;40(2):194–202. Available
from: https://journals.lww.com/10.1097/ICO.0000000000002458
80. Ting DSJ, Foo VH, Yang LWY, Sia JT, Ang M, Lin H, et al. Artificial
intelligence for anterior segment diseases: Emerging applications in
ophthalmology. Br J Ophthalmol [Internet]. 2021 Feb;105(2):158–68.
Available from: https://bjo.bmj.com/lookup/doi/10.1136/bjophthalmol-2019-
315651
81. Issarti I, Consejo A, Jiménez-García M, Kreps EO, Koppen C, Rozema JJ.
Logistic index for keratoconus detection and severity scoring (Logik). Comput
Biol Med [Internet]. 2020 Jul;122:103809. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0010482520301761
82. Kamiya K, Ayatsuka Y, Kato Y, Fujimura F, Takahashi M, Shoji N, et al.
Keratoconus detection using deep learning of colour-coded maps with anterior
segment optical coherence tomography: a diagnostic accuracy study. BMJ
Open [Internet]. 2019 Sep 27;9(9):e031313. Available from:
https://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2019-031313
83. Cao K, Verspoor K, Sahebjada S, Baird PN. Evaluating the Performance of
Various Machine Learning Algorithms to Detect Subclinical Keratoconus.
Transl Vis Sci Technol [Internet]. 2020 Apr 24;9(2):24. Available from:
https://tvst.arvojournals.org/article.aspx?articleid=2765235
84. Accardo PA, Pensiero S. Neural network-based system for early keratoconus
detection from corneal topography. J Biomed Inform [Internet]. 2002
Jun;35(3):151–9. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S1532046402005130
85. Vellara HR, Patel D V. Biomechanical properties of the keratoconic cornea: a
review. Clin Exp Optom [Internet]. 2015 Jan 1;98(1):31–8. Available from:
https://www.tandfonline.com/doi/full/10.1111/cxo.12211
86. Nash IS, Greene PR, Foster CS. Comparison of mechanical properties of
keratoconus and normal corneas. Exp Eye Res [Internet]. 1982
129
Nov;35(5):413–24. Available from:
https://linkinghub.elsevier.com/retrieve/pii/0014483582900409
87. Luce DA. Determining in vivo biomechanical properties of the cornea with an
ocular response analyzer. J Cataract Refract Surg [Internet]. 2005
Jan;31(1):156–62. Available from: https://journals.lww.com/02158034-
200501000-00043
88. Shetty R, Francis M, Shroff R, Pahuja N, Khamar P, Girrish M, et al. Corneal
Biomechanical Changes and Tissue Remodeling After SMILE and LASIK.
Investig Opthalmology Vis Sci [Internet]. 2017 Nov 3;58(13):5703. Available
from: http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.17-22864
89. Vinciguerra R, Ambrósio R, Roberts CJ, Azzolini C, Vinciguerra P.
Biomechanical Characterization of Subclinical Keratoconus Without
Topographic or Tomographic Abnormalities. J Refract Surg [Internet]. 2017
Jun;33(6):399–407. Available from:
https://journals.healio.com/doi/10.3928/1081597X-20170213-01
90. Luz A, Lopes B, Hallahan KM, Valbon B, Fontes B, Schor P, et al.
Discriminant Value of Custom Ocular Response Analyzer Waveform
Derivatives in Forme Fruste Keratoconus. Am J Ophthalmol [Internet]. 2016
Apr;164:14–21. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0002939415300258
91. De Stefano VS, Ford MR, Seven I, Dupps WJ. Depth-Dependent Corneal
Biomechanical Properties in Normal and Keratoconic Subjects by Optical
Coherence Elastography. Transl Vis Sci Technol [Internet]. 2020 Jun 3;9(7):4.
Available from: https://tvst.arvojournals.org/article.aspx?articleid=2766304
92. Jesus DA, Iskander DR. Assessment of corneal properties based on statistical
modeling of OCT speckle. Biomed Opt Express [Internet]. 2017 Jan
1;8(1):162. Available from: https://opg.optica.org/abstract.cfm?URI=boe-8-1-
162
93. Perry HD, Buxton JN, Fine BS. Round and Oval Cones in Keratoconus.
Ophthalmology [Internet]. 1980 Sep;87(9):905–9. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0161642080351452
94. Vega Estrada A, Sanz Díez P, Alió JL. Keratoconus Grading and Its
Therapeutic Implications. In 2017. p. 177–84. Available from:
http://link.springer.com/10.1007/978-3-319-43881-8_15
95. Amsler M. Kératocône classique et kératocône fruste; arguments unitaires.
Ophthalmologica [Internet]. 1946;111(2–3):96–101. Available from:
https://www.karger.com/Article/FullText/300309
96. Alió JL, Shabayek MH. Corneal Higher Order Aberrations: A Method to
Grade Keratoconus. J Refract Surg [Internet]. 2006 Jun;22(6):539–45.
130
Available from: https://journals.healio.com/doi/10.3928/1081-597X 20060601-05
97. McMahon TT, Szczotka-Flynn L, Barr JT, Anderson RJ, Slaughter ME, Lass
JH, et al. A New Method for Grading the Severity of Keratoconus. Cornea
[Internet]. 2006 Aug;25(7):794–800. Available from:
https://journals.lww.com/00003226-200608000-00007
98. Alió JL, Piñero DP, Alesón A, Teus MA, Barraquer RI, Murta J, et al.
Keratoconus-integrated characterization considering anterior corneal
aberrations, internal astigmatism, and corneal biomechanics. J Cataract
Refract Surg [Internet]. 2011 Mar;37(3):552–68. Available from:
https://journals.lww.com/02158034-201103000-00020
99. Belin M, Duncan J. Keratoconus: The ABCD Grading System. Klin Monbl
Augenheilkd [Internet]. 2016 Jan 20;233(06):701–7. Available from:
http://www.thieme-connect.de/DOI/DOI?10.1055/s-0042-100626
100. Wagner H, Barr JT, Zadnik K. Collaborative Longitudinal Evaluation of
Keratoconus (CLEK) Study: methods and findings to date. Cont Lens Anterior
Eye [Internet]. 2007 Sep;30(4):223–32. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/17481941
101. Santodomingo-Rubido J, Carracedo G, Suzaki A, Villa-Collar C, Vincent SJ,
Wolffsohn JS. Keratoconus: An updated review. Contact Lens Anterior Eye
[Internet]. 2022 Jun;45(3):101559. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S1367048421002058
102. Fraser CG, Fogarty Y. Interpreting laboratory results. BMJ [Internet]. 1989
Jun 24;298(6689):1659–60. Available from:
https://www.bmj.com/lookup/doi/10.1136/bmj.298.6689.1659
103. Szalai E, Berta A, Hassan Z, Módis L. Reliability and repeatability of swept source Fourier-domain optical coherence tomography and Scheimpflug
imaging in keratoconus. J Cataract Refract Surg [Internet]. 2012
Mar;38(3):485–94. Available from: https://journals.lww.com/02158034-
201203000-00017
104. O’Brart DPS, Chan E, Samaras K, Patel P, Shah SP. A randomised,
prospective study to investigate the efficacy of riboflavin/ultraviolet A (370
nm) corneal collagen cross-linkage to halt the progression of keratoconus. Br J
Ophthalmol [Internet]. 2011 Nov 1;95(11):1519–24. Available from:
https://bjo.bmj.com/lookup/doi/10.1136/bjo.2010.196493
105. Hersh PS, Greenstein SA, Fry KL. Corneal collagen crosslinking for
keratoconus and corneal ectasia: One-year results. J Cataract Refract Surg
[Internet]. 2011 Jan;37(1):149–60. Available from:
https://journals.lww.com/02158034-201101000-00023
131
106. Gore DM, Shortt AJ, Allan BD. New clinical pathways for keratoconus. Eye
[Internet]. 2013 Mar 21;27(3):329–39. Available from:
https://www.nature.com/articles/eye2012257
107. A Randomized Controlled Trial of Corneal Collagen Cross-linking in
Progressive Keratoconus: Preliminary Results. J Refract Surg [Internet]. 2008
Jan;24(7). Available from: https://journals.healio.com/doi/10.3928/1081597X 20080901-15
108. Santodomingo-Rubido J, Carracedo G, Suzaki A, Villa-Collar C, Vincent SJ,
Wolffsohn JS. Keratoconus: An updated review. Cont Lens Anterior Eye
[Internet]. 2022 Jun;45(3):101559. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/34991971
109. Sahebjada S, Al-Mahrouqi HH, Moshegov S, Panchatcharam SM, Chan E,
Daniell M, et al. Eye rubbing in the aetiology of keratoconus: a systematic
review and meta-analysis. Graefe’s Arch Clin Exp Ophthalmol [Internet].
2021 Aug 23;259(8):2057–67. Available from:
https://link.springer.com/10.1007/s00417-021-05081-8
110. Abass A, Lopes BT, Jones S, White L, Clamp J, Elsheikh A. Non-Orthogonal
Refractive Lenses for Non-Orthogonal Astigmatic Eyes. Curr Eye Res
[Internet]. 2019 Jul 3;44(7):781–9. Available from:
https://www.tandfonline.com/doi/full/10.1080/02713683.2019.1589523
111. Rico-Del-Viejo L, Garcia-Montero M, Hernández-Verdejo JL, García-Lázaro
S, Gómez-Sanz FJ, Lorente-Velázquez A. Nonsurgical Procedures for
Keratoconus Management. J Ophthalmol [Internet]. 2017;2017:1–17.
Available from: https://www.hindawi.com/journals/joph/2017/9707650/
112. Şengör T, Aydın Kurna S. Update on Contact Lens Treatment of Keratoconus.
Turkish J Ophthalmol [Internet]. 2020 Aug 1;50(4):234–44. Available from:
https://www.oftalmoloji.org/archives/archive-detail/article-preview/update-on contact-lens-treatment-of-keratoconus/40089
113. Ling JJ, Mian SI, Stein JD, Rahman M, Poliskey J, Woodward MA. Impact of
Scleral Contact Lens Use on the Rate of Corneal Transplantation for
Keratoconus. Cornea [Internet]. 2021 Jan;40(1):39–42. Available from:
https://journals.lww.com/10.1097/ICO.0000000000002388
114. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a–induced collagen
crosslinking for the treatment of keratoconus. Am J Ophthalmol [Internet].
2003 May;135(5):620–7. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0002939402022201
115. Wachler BS, Jalali S, Chan CCK. C3E Corneal Collagen Crosslinking with
Riboflavin. In: Wachler BS, eds. Modern management of keratoconus, New
Delhi; Jaypee Brothers Medical Publisher; 2008:3;75-92. 11.
132
116. Ferrari G, Rama P. The keratoconus enigma: A review with emphasis on
pathogenesis. Ocul Surf [Internet]. 2020 Jul;18(3):363–73. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S1542012420300598
117. Deshmukh R, Ong ZZ, Rampat R, Alió del Barrio JL, Barua A, Ang M, et al.
Management of keratoconus: an updated review. Front Med [Internet]. 2023
Jun 20;10. Available from:
https://www.frontiersin.org/articles/10.3389/fmed.2023.1212314/full
118. Bui AD, Truong A, Pasricha N, Indaram M. Keratoconus Diagnosis and
Treatment: Recent Advances and Future Directions. Clin Ophthalmol
[Internet]. 2023 Sep;Volume 17:2705–18. Available from:
https://www.dovepress.com/keratoconus-diagnosis-and-treatment-recent advances-and-future-directi-peer-reviewed-fulltext-article-OPTH
119. Atalay E, Özalp O, Yıldırım N. Advances in the diagnosis and treatment of
keratoconus. Ther Adv Ophthalmol [Internet]. 2021 Jan
24;13:251584142110127. Available from:
http://journals.sagepub.com/doi/10.1177/25158414211012796
120. Falgayrettes N, Patoor E, Cleymand F, Zevering Y, Perone J-M.
Biomechanics of keratoconus: Two numerical studies. Riveiro Rodríguez A,
editor. PLoS One [Internet]. 2023 Feb 2;18(2):e0278455. Available from:
https://dx.plos.org/10.1371/journal.pone.0278455
121. D’Oria F, Bagaglia SA, Alio del Barrio JL, Alessio G, Alio JL, Mazzotta C.
Refractive surgical correction and treatment of keratoconus. Surv Ophthalmol
[Internet]. 2024 Jan;69(1):122–39. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S003962572300125X
122. Greenstein SA, Yu AS, Gelles JD, Huang S, Hersh PS. Long-Term Outcomes
After Corneal Cross-linking for Progressive Keratoconus and Corneal Ectasia:
A 10-Year Follow-Up of the Pivotal Study. Eye Contact Lens Sci Clin Pract
[Internet]. 2023 Oct;49(10):411–6. Available from:
https://journals.lww.com/10.1097/ICL.0000000000001018
123. Sedaghat M, Bagheri M, Ghavami S, Bamdad S. Changes in corneal
topography and biomechanical properties after collagen cross linking for
keratoconus: 1-year results. Middle East Afr J Ophthalmol [Internet].
2015;22(2):212. Available from: https://journals.lww.com/10.4103/0974-
9233.151877
124. Kosekahya P, Turkay M, Camgoz EB, Koc M, Toker MI. Long-term
evaluation of posterior corneal surface parameters after accelerated corneal
cross-linking with a comparison with uncross-linked keratoconic eyes. Int
Ophthalmol [Internet]. 2022 May 27;42(12):3725–38. Available from:
https://link.springer.com/10.1007/s10792-022-02370-x
133
125. Kirgiz A, Eliacik M, Yildirim Y. Different accelerated corneal collagen cross linking treatment modalities in progressive keratoconus. Eye Vis [Internet].
2019 Dec 3;6(1):16. Available from:
https://eandv.biomedcentral.com/articles/10.1186/s40662-019-0141-6
126. Derakhshan A, Heravian J, Abdolahian M, Bamdad S. Long-term Outcomes
of Collagen Crosslinking for Early Keratoconus. J Ophthalmic Vis Res
[Internet]. 2021 Apr 29; Available from:
https://knepublishing.com/index.php/JOVR/article/view/9077
127. Vinciguerra R, Bordignon N, Ferraro V, Mazzotta C, Rosetta P, Vinciguerra
P. Corneal Collagen Cross-Linking for Progressive Keratoconus in Pediatric
Patients: Up to 14 Years of Follow-up. Am J Ophthalmol [Internet]. 2023
Nov;255:170–7. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0002939423002970
128. Toprak I, Yaylali V, Yildirim C. Visual, Topographic, and Pachymetric
Effects of Pediatric Corneal Collagen Cross-linking. J Pediatr Ophthalmol
Strabismus [Internet]. 2017 Mar;54(2):84–9. Available from:
https://journals.healio.com/doi/10.3928/01913913-20160831-01
129. Çakmak S, Sucu ME, Yildirim Y, Kepez Yildiz B, Kirgiz A, Bektaşoğlu DL,
et al. Complications of accelerated corneal collagen cross-linking: review of
2025 eyes. Int Ophthalmol [Internet]. 2020 Dec 26;40(12):3269–77. Available
from: https://link.springer.com/10.1007/s10792-020-01512-3
130. Salman A, Ali A, Rafea S, Omran R, Kubaisi B, Ghabra M, et al. Long-term
visual, anterior and posterior corneal changes after crosslinking for
progressive keratoconus. Eur J Ophthalmol [Internet]. 2022 Jan 30;32(1):50–
8. Available from:
http://journals.sagepub.com/doi/10.1177/11206721211052878
131. Salman A, Darwish T, Ghabra M, Kailani O, Khalil H, Shaaban R. Clinical
Outcomes of Accelerated Corneal Cross-Linking for Pediatric Keratoconus.
Lombardo M, editor. J Ophthalmol [Internet]. 2021 Nov 18;2021:1–9.
Available from: https://www.hindawi.com/journals/joph/2021/1851883/
132. Steinberg J, Ahmadiyar M, Rost A, Frings A, Filev F, Katz T, et al. Anterior
and Posterior Corneal Changes after Crosslinking for Keratoconus. Optom Vis
Sci [Internet]. 2014 Feb;91(2):178–86. Available from:
https://journals.lww.com/00006324-201402000-00010
133. Gharieb HM, Othman IS, Oreaba AH, Abdelatif MK. Topographic, elevation,
and keratoconus indices for diagnosis of keratoconus by a combined Placido
and Scheimpflug topography system. Eur J Ophthalmol [Internet]. 2021 Jul
7;31(4):1553–62. Available from:
http://journals.sagepub.com/doi/10.1177/1120672121991725
134
134. Mounir A, El Saman IS, Anbar M. The Correlation between Corneal
Topographic Indices and Corneal High Order Aberrations in Keratoconus.
Med hypothesis, Discov Innov Ophthalmol J [Internet]. 2019;8(1):1–6.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/30923715
135. Büyüktortop Gökçınar N. ve Akbulut, Y. Keratokonuslu Gözlerde Kombine
Scheimpflug-Placido Disk Ön Segment Analiz Sistemi Ölçümlerinin
Tekrarlanabilirliği ve Güvenilirliği, MN Oftalmoloji, 2019;26(2):74-81.
136. Kandel S, Chaudhary M, Mishra SK, Joshi ND, Subedi M, Puri PR, et al.
Evaluation of corneal topography, pachymetry and higher order aberrations
for detecting subclinical keratoconus. Ophthalmic Physiol Opt [Internet]. 2022
May 11;42(3):594–608. Available from:
https://onlinelibrary.wiley.com/doi/10.1111/opo.12956
137. Subaşı S, Yüksel N, Balcı MF, Demirci K, Pirhan D, Tuğan BY. Pediatrik
Keratokonus Vakalarında Transepitelyal Cross-linking Tedavisinin Etkinliği.
Kocaeli Tıp Dergisi. Aralık 2017;6(3):36-40.
138. Gilevska F, Biscevic A, Popovic Suic S, Bohac M, Patel S. Are changes in
visual acuity and astigmatism after corneal cross-linking (CXL) in
keratoconus predictable? Graefe’s Arch Clin Exp Ophthalmol [Internet]. 2021
Aug 22;259(8):2259–68. Available from:
https://link.springer.com/10.1007/s00417-021-05173-5
139. Grewal DS, Brar GS, Jain R, Sood V, Singla M, Grewal SPS. Corneal
collagen crosslinking using riboflavin and ultraviolet-A light for keratoconus.
J Cataract Refract Surg [Internet]. 2009 Mar;35(3):425–32. Available from:
https://journals.lww.com/02158034-200903000-00016
140. Saffarian L, Khakshoor H, Zarei-Ghanavati M, Esmaily H. Corneal
crosslinking for keratoconus in Iranian patients: Outcomes at 1 year following
treatment. Middle East Afr J Ophthalmol [Internet]. 2010;17(4):365. Available
from: https://journals.lww.com/10.4103/0974-9233.71600
141. Safarzadeh M, Nasiri N. Anterior segment characteristics in normal and
keratoconus eyes evaluated with a combined Scheimpflug/Placido corneal
imaging device. J Curr Ophthalmol [Internet]. 2016 Sep;28(3):106–11.
Available from:
https://linkinghub.elsevier.com/retrieve/pii/S2452232516300087
142. Huang J, Liao H, Wan C, Gong L, He L, Jiang H, et al. Three‑year clinical
observation of the outcomes of transepithelial and epithelial‑off accelerated
corneal collagen crosslinking treatment for different types of progressive
keratoconus. Exp Ther Med [Internet]. 2020 May 12;20(2):786–95. Available
from: http://www.spandidos-publications.com/10.3892/etm.2020.8741
143. Berhuni M, Ozturkmen C. Comparison of accelerated corneal cross-linking for
progressive keratoconus in pediatric and adult age groups: One-year results. J
135
Fr Ophtalmol [Internet]. 2022 Sep;45(7):710–7. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0181551222001395
144. İnan S, Çetinkaya E, Duman R, Kutluksaman B, Doğan M, Yavaş GF.
Keratokonus Progresyonunun Önlenmesinde Korneal Kollajen Çapraz
Bağlama Tedavisinin Etkinliği Selcuk Med J 2018;34(3): 106-111.
145. Razmjoo H, Peyman A, Rahimi A, Modrek H. Cornea Collagen Cross-linking
for Keratoconus: A Comparison between Accelerated and Conventional
Methods. Adv Biomed Res [Internet]. 2017;6(1):10. Available from:
https://journals.lww.com/10.4103/2277-9175.200785
146. Mohebbi M, Samavat B, Mohammadi A. One-year non-comparative
observational study to evaluate corneal tomographic, densitometric, and
aberrometric features following accelerated corneal cross-linking in
progressive keratoconus. Int Ophthalmol [Internet]. 2022 Nov 23;43(5):1721–
35. Available from: https://link.springer.com/10.1007/s10792-022-02572-3
147. Eslami M, Ghaseminejad F, Dubord PJ, Yeung SN, Iovieno A. Delayed
Topographical and Refractive Changes Following Corneal Cross-Linking for
Keratoconus. J Clin Med [Internet]. 2022 Mar 31;11(7):1950. Available from:
https://www.mdpi.com/2077-0383/11/7/1950
148. Wang YM, Chan TCY, Yu M, Jhanji V. Shift in progression rate of
keratoconus before and after epithelium-off accelerated corneal collagen
crosslinking. J Cataract Refract Surg [Internet]. 2017 Jul;43(7):929–36.
Available from: https://journals.lww.com/02158034-201707000-00014
149. Peyman A, Feizi A, Ganjalikhani-Hakemi M, Hosseini-Nasab F, Pourazizi M.
Outcome of corneal collagen cross-linking in keratoconus: Introducing the
predictive factors. J Curr Ophthalmol [Internet]. 2020;32(1):19. Available
from: http://www.jcurrophthalmol.org/text.asp?2020/32/1/19/281254
150. O’Brart DPS, Patel P, Lascaratos G, Wagh VK, Tam C, Lee J, et al. Corneal
Cross-linking to Halt the Progression of Keratoconus and Corneal Ectasia:
Seven-Year Follow-up. Am J Ophthalmol [Internet]. 2015 Dec;160(6):1154–
63. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0002939415005176
151. Doctor K, Vunnava K, Shroff R, Kaweri L, Lalgudi V, Gupta K, et al.
Simplifying and understanding various topographic indices for keratoconus
using Scheimpflug based topographers. Indian J Ophthalmol [Internet].
2020;68(12):2732. Available from:
https://journals.lww.com/ijo/Fulltext/2020/68120/Simplifying_and_understan
ding_various_topographic.20.aspx
152. Henriquez MA, Perez L, Hernandez-Sahagun G, Rojas RP, Stulting RD,
Izquierdo Jr L. Long Term Corneal Flattening After Corneal Crosslinking in
Patients with Progressive Keratoconus. Clin Ophthalmol [Internet]. 2023
136
Jul;Volume 17:1865–75. Available from: https://www.dovepress.com/long term-corneal-flattening-after-corneal-crosslinking-in-patients-wi-peer reviewed-fulltext-article-OPTH
153. Arance-Gil Á, Villa-Collar C, Pérez-Sanchez B, Carracedo G, Gutiérrez Ortega R. Epithelium-Off vs. transepithelial corneal collagen crosslinking in
progressive keratoconus: 3 years of follow-up. J Optom [Internet]. 2021
Apr;14(2):189–98. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S188842962030087X
154. Vega-Estrada A, Alio JL. Keratoconus Corneal Posterior Surface
Characterization According to the Degree of Visual Limitation. Cornea
[Internet]. 2019 Jun 14;38(6):730–6. Available from:
https://journals.lww.com/00003226-201906000-00011
155. Bühren J, Kook D, Yoon G, Kohnen T. Detection of Subclinical Keratoconus
by Using Corneal Anterior and Posterior Surface Aberrations and Thickness
Spatial Profiles. Investig Opthalmology Vis Sci [Internet]. 2010 Jul
1;51(7):3424. Available from:
http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.09-4960