Özet
Copper exhibits potent antibacterial, antifungal, antiviral, and anti-inflammatory effects by supporting the host's immune response. Our study aimed to investigate the clinical and prognostic effects of copper and ceruloplasmin levels in critically ill patients with confirmed or suspected COVID-19 in the ICU. After obtaining ethical committee approval, adult patients admitted to the Hacettepe University Anesthesiology Intensive Care Unit from November 15, 2021, to June 15, 2022, were included. Patients were divided into two groups: COVID-19 positive and negative. The criteria for the COVID-19 negative group included four consecutive negative PCR results and symptoms explainable by other clinical conditions.
Demographic data, comorbidities, admission symptoms, COVID-19 PCR results, APACHE-II and SOFA scores, length of stay, laboratory results, copper and ceruloplasmin levels at admission, mechanical ventilation requirements, vasopressor needs, and mortality data were prospectively recorded. The normal serum range for copper was determined as 13.3-26.7 μmol/L and for ceruloplasmin as 22-58 mg/dL.
The median (range) age of all patients (N=107) was 73 years (20-91), with 60 (56%) females and 47 (44%) males. Fifty-seven patients were COVID-19 positive, and fifty were negative. The median copper and ceruloplasmin levels for the COVID-19 positive group were 22.44 μmol/L (4.15-42.26) and 44.3 mg/dL (23.2-87), respectively, while for the COVID-19 negative group, they were 23.185 μmol/L (11.23-39.9) and 45 mg/dL (20.6-82.2) (p=0.62 and p=0.753).
No significant relationship was found between copper and ceruloplasmin levels and gender, statin and food supplement usage, malnutrition, oxygen, mechanical ventilation, vasopressor and renal replacement therapy needs, ICU and hospital length of stay, and mortality. Four (4%) patients had low copper levels, 80 (75%) had normal levels, and 23 (21%) had high levels. The high copper group showed significantly higher GGT (gamma glutamyl transferase) levels (59(13-315) vs. 39(8-369), p=0.049) and leukocyte counts (9.7(4.8-37.4) vs. 8.25(1.6-29.2) (x103 /microL) ( p=0.028) compared to the normal copper group, but there was no significant impact on mechanical ventilation, vasopressor and renal replacement therapy needs, ICU and hospital length of stay, and mortality.
In conclusion, copper levels measured at ICU admission did not significantly impact clinical outcomes in critically ill patients with confirmed or suspected COVID-19. However, given that one-fifth of critical patients had high copper levels, monitoring copper levels at admission and careful observation for toxicity might be important in critically ill patients.
Künye
1. Bakanlığı TCS. TÜRKİYE COVID-19 TABLOSU: T.C. Sağlık Bakanlığı; 2023 [Available from: https://covid19.saglik.gov.tr/.
2. Yildrim S, Kirakli C. Accuracy of conventional disease severity scores in predicting COVID-19 ICU mortality: retrospective single-center study in Turkey. Ann Saudi Med. 2022;42(6):408-14.
3. Andreou A, Trantza S, Filippou D, Sipsas N, Tsiodras S. COVID-19: The Potential Role of Copper and N-acetylcysteine (NAC) in a Combination of Candidate Antiviral Treatments Against SARS-CoV-2. In Vivo. 2020;34(3 Suppl):1567-88.
4. Fooladi S, Matin S, Mahmoodpoor A. Copper as a potential adjunct therapy for critically ill COVID-19 patients. Clin Nutr ESPEN. 2020;40:90-1.
5. Galmés S, Serra F, Palou A. Current State of Evidence: Influence of Nutritional and Nutrigenetic Factors on Immunity in the COVID-19 Pandemic Framework. Nutrients. 2020;12(9).
6. Govind V, Bharadwaj S, Sai Ganesh MR, Vishnu J, Shankar KV, Shankar B, et al. Antiviral properties of copper and its alloys to inactivate covid-19 virus: a review. Biometals. 2021;34(6):1217-35.
7. Myint ZW, Oo TH, Thein KZ, Tun AM, Saeed H. Copper deficiency anemia: review article. Ann Hematol. 2018;97(9):1527-34.
8. Hordyjewska A, Popiołek Ł, Kocot J. The many "faces" of copper in medicine and treatment. Biometals. 2014;27(4):611-21.
9. Hackler J, Heller RA, Sun Q, Schwarzer M, Diegmann J, Bachmann M, et al. Relation of Serum Copper Status to Survival in COVID-19. Nutrients. 2021;13(6).
10. Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 2022;7(1):378.
11. Gagnon G, Voirol P, Soguel L, Boulat O, Berger MM. Trace element monitoring in the ICU: quality and economic impact of a change in sampling practice. Clin Nutr. 2015;34(3):422-7.
12. An Y, Li S, Huang X, Chen X, Shan H, Zhang M. The Role of Copper Homeostasis in Brain Disease. Int J Mol Sci. 2022;23(22).
13. Eskici G, Axelsen PH. Copper and oxidative stress in the pathogenesis of Alzheimer's disease. Biochemistry. 2012;51(32):6289-311.
14. Rodriguez K, Saunier F, Rigaill J, Audoux E, Botelho-Nevers E, Prier A, et al. Evaluation of in vitro activity of copper gluconate against SARS-CoV-2 using confocal microscopy-based high content screening. J Trace Elem Med Biol. 2021;68:126818.
15. Berger MM, Shenkin A, Schweinlin A, Amrein K, Augsburger M, Biesalski HK, et al. ESPEN micronutrient guideline. Clin Nutr. 2022;41(6):1357-424.
16. Linder MC, Wooten L, Cerveza P, Cotton S, Shulze R, Lomeli N. Copper transport. Am J Clin Nutr. 1998;67(5 Suppl):965s-71s.
17. van den Berghe PV, Klomp LW. New developments in the regulation of intestinal copper absorption. Nutr Rev. 2009;67(11):658-72.
18. Papamargaritis D, Aasheim ET, Sampson B, le Roux CW. Copper, selenium and zinc levels after bariatric surgery in patients recommended to take multivitamin-mineral supplementation. J Trace Elem Med Biol. 2015;31:167-72.
19. Dearling JLJ, Packard AB. A Sensitive Method for the Measurement of Copper at Trace Levels Using an HPLC-Based Assay. Curr Radiopharm. 2017;10(1):59-64.
20. Bost M, Houdart S, Oberli M, Kalonji E, Huneau JF, Margaritis I. Dietary copper and human health: Current evidence and unresolved issues. J Trace Elem Med Biol. 2016;35:107-15.
21. Rondanelli M, Faliva MA, Infantino V, Gasparri C, Iannello G, Perna S, et al. Copper as Dietary Supplement for Bone Metabolism: A Review. Nutrients. 2021;13(7).
22. Cashman KD, Baker A, Ginty F, Flynn A, Strain JJ, Bonham MP, et al. No effect of copper supplementation on biochemical markers of bone metabolism in healthy young adult females despite apparently improved copper status. Eur J Clin Nutr. 2001;55(7):525-31.
23. drugs.com. Copper Interactions 2024 [Available from: https://www.drugs.com/drug-interactions/copper-gluconate,copper.html.
24. Tahir N, Ashraf A, Waqar SHB, Rafae A, Kantamneni L, Sheikh T, et al. Copper deficiency, a rare but correctable cause of pancytopenia: a review of literature. Expert Rev Hematol. 2022;15(11):999-1008.
25. Lazarchick J. Update on anemia and neutropenia in copper deficiency. Curr Opin Hematol. 2012;19(1):58-60.
26. Wang X, Zhou M, Liu Y, Si Z. Cope with copper: From copper linked mechanisms to copper-based clinical cancer therapies. Cancer Lett. 2023;561:216157.
27. Liu Y, Miao J. An Emerging Role of Defective Copper Metabolism in Heart Disease. Nutrients. 2022;14(3).
28. Cui X, Wang Y, Liu H, Shi M, Wang J, Wang Y. The Molecular Mechanisms of Defective Copper Metabolism in Diabetic Cardiomyopathy. Oxid Med Cell Longev. 2022;2022:5418376.
29. Altarelli M, Ben-Hamouda N, Schneider A, Berger MM. Copper Deficiency: Causes, Manifestations, and Treatment. Nutr Clin Pract. 2019;34(4):504-13.
30. Jaiser SR, Winston GP. Copper deficiency myelopathy. J Neurol. 2010;257(6):869-81.
31. Baldari S, Di Rocco G, Toietta G. Current Biomedical Use of Copper Chelation Therapy. Int J Mol Sci. 2020;21(3).
32. Engin AB, Engin ED, Engin A. Can iron, zinc, copper and selenium status be a prognostic determinant in COVID-19 patients? Environ Toxicol Pharmacol. 2022;95:103937.
33. Rani I, Goyal A, Bhatnagar M, Manhas S, Goel P, Pal A, et al. Potential molecular mechanisms of zinc- and copper-mediated antiviral activity on COVID-19. Nutr Res. 2021;92:109-28.
34. Borkow G, Gabbay J. Copper as a biocidal tool. Curr Med Chem. 2005;12(18):2163-75.
35. Cortes AA, Zuñiga JM. The use of copper to help prevent transmission of SARS-coronavirus and influenza viruses. A general review. Diagn Microbiol Infect Dis. 2020;98(4):115176.
36. Malik YA. Properties of Coronavirus and SARS-CoV-2. Malays J Pathol. 2020;42(1):3-11.
37. Haake C, Cook S, Pusterla N, Murphy B. Coronavirus Infections in Companion Animals: Virology, Epidemiology, Clinical and Pathologic Features. Viruses. 2020;12(9).
38. Majumder J, Minko T. Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19. Aaps j. 2021;23(1):14.
39. Zhong NS, Zheng BJ, Li YM, Poon, Xie ZH, Chan KH, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet. 2003;362(9393):1353-8.
40. Habas K, Nganwuchu C, Shahzad F, Gopalan R, Haque M, Rahman S, et al. Resolution of coronavirus disease 2019 (COVID-19). Expert Rev Anti Infect Ther. 2020;18(12):1201-11.
41. Kadam SB, Sukhramani GS, Bishnoi P, Pable AA, Barvkar VT. SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights. J Basic Microbiol. 2021;61(3):180-202.
42. V'Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19(3):155-70.
43. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33.
44. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-20.
45. Yang H, Rao Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nature Reviews Microbiology. 2021;19(11):685-700.
46. Yapasert R, Khaw-On P, Banjerdpongchai R. Coronavirus Infection-Associated Cell Death Signaling and Potential Therapeutic Targets. Molecules. 2021;26(24).
47. Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. J Biol Chem. 2020;295(37):12910-34.
48. Ju X, Zhu Y, Wang Y, Li J, Zhang J, Gong M, et al. A novel cell culture system modeling the SARS-CoV-2 life cycle. PLoS Pathog. 2021;17(3):e1009439.
49. Cascella M, Rajnik M, Aleem A, Dulebohn SC, Di Napoli R. Features, Evaluation, and Treatment of Coronavirus (COVID-19). StatPearls. Treasure Island (FL): StatPearls Publishing
Copyright © 2023, StatPearls Publishing LLC.; 2023.
50. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-4.
51. Parasher A. COVID-19: Current understanding of its Pathophysiology, Clinical presentation and Treatment. Postgrad Med J. 2021;97(1147):312-20.
52. Li J, Huang DQ, Zou B, Yang H, Hui WZ, Rui F, et al. Epidemiology of COVID-19: A systematic review and meta-analysis of clinical characteristics, risk factors, and outcomes. J Med Virol. 2021;93(3):1449-58.
53. Rahman MM, Bhattacharjee B, Farhana Z, Hamiduzzaman M, Chowdhury MAB, Hossain MS, et al. Age-related risk factors and severity of SARS-CoV-2 infection: a systematic review and meta-analysis. J Prev Med Hyg. 2021;62(2):E329-e71.
54. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. Jama. 2020;323(13):1239-42.
55. Lu X, Zhang L, Du H, Zhang J, Li YY, Qu J, et al. SARS-CoV-2 Infection in Children. N Engl J Med. 2020;382(17):1663-5.
56. Vivanti AJ, Vauloup-Fellous C, Prevot S, Zupan V, Suffee C, Do Cao J, et al. Transplacental transmission of SARS-CoV-2 infection. Nat Commun. 2020;11(1):3572.
57. Wastnedge EAN, Reynolds RM, van Boeckel SR, Stock SJ, Denison FC, Maybin JA, et al. Pregnancy and COVID-19. Physiol Rev. 2021;101(1):303-18.
58. Gupta S, Hayek SS, Wang W, Chan L, Mathews KS, Melamed ML, et al. Factors Associated With Death in Critically Ill Patients With Coronavirus Disease 2019 in the US. JAMA Intern Med. 2020;180(11):1436-47.
59. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13.
60. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
61. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62.
62. WHO. Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations: WHO; 2020 [Available from: https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations.
63. Adam DC, Wu P, Wong JY, Lau EHY, Tsang TK, Cauchemez S, et al. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nature Medicine. 2020;26(11):1714-9.
64. Sharma A, Balda S, Apreja M, Kataria K, Capalash N, Sharma P. COVID-19 Diagnosis: Current and Future Techniques. Int J Biol Macromol. 2021;193(Pt B):1835-44.
65. Spearman P. Diagnostic testing for SARS-CoV-2/COVID19. Curr Opin Pediatr. 2021;33(1):122-8.
66. Munne K, Bhanothu V, Bhor V, Patel V, Mahale SD, Pande S. Detection of SARS-CoV-2 infection by RT-PCR test: factors influencing interpretation of results. Virusdisease. 2021;32(2):187-9.
67. Ong DSY, Fragkou PC, Schweitzer VA, Chemaly RF, Moschopoulos CD, Skevaki C. How to interpret and use COVID-19 serology and immunology tests. Clin Microbiol Infect. 2021;27(7):981-6.
68. Ochani R, Asad A, Yasmin F, Shaikh S, Khalid H, Batra S, et al. COVID-19 pandemic: from origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management. Infez Med. 2021;29(1):20-36.
69. Al-Saadi E, Abdulnabi MA. Hematological changes associated with COVID-19 infection. J Clin Lab Anal. 2022;36(1):e24064.
70. Karacan A, Aksoy YE, Öztürk MH. The radiological findings of COVID-19. Turk J Med Sci. 2021;51(Si-1):3328-39.
71. Islam N, Salameh JP, Leeflang MM, Hooft L, McGrath TA, van der Pol CB, et al. Thoracic imaging tests for the diagnosis of COVID-19. Cochrane Database Syst Rev. 2020;11:Cd013639.
72. Soriano Aguadero I, Ezponda Casajús A, Mendoza Ferradas F, Igual Rouilleault A, Paternain Nuin A, Pueyo Villoslada J, et al. Chest computed tomography findings in different phases of SARS-CoV-2 infection. Radiologia (Engl Ed). 2021;63(3):218-27.
73. Nana M, Hodson K, Lucas N, Camporota L, Knight M, Nelson-Piercy C. Diagnosis and management of covid-19 in pregnancy. Bmj. 2022;377:e069739.
74. Huang S, Yang J, Fong S, Zhao Q. Artificial intelligence in the diagnosis of COVID-19: challenges and perspectives. Int J Biol Sci. 2021;17(6):1581-7.
75. Lui G, Guaraldi G. Drug treatment of COVID-19 infection. Curr Opin Pulm Med. 2023;29(3):174-83.
76. Stasi C, Fallani S, Voller F, Silvestri C. Treatment for COVID-19: An overview. Eur J Pharmacol. 2020;889:173644.
77. Del Valle DM, Kim-Schulze S, Huang HH, Beckmann ND, Nirenberg S, Wang B, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26(10):1636-43.
78. Curtis JR, Zhou X, Rubin DT, Reinisch W, Yazdany J, Robinson PC, et al. Characteristics, Comorbidities, and Outcomes of SARS-CoV-2 Infection in Patients With Autoimmune Conditions Treated With Systemic Therapies: A Population-based Study. J Rheumatol. 2022;49(3):320-9.
79. Izadi Z, Brenner EJ, Mahil SK, Dand N, Yiu ZZN, Yates M, et al. Association Between Tumor Necrosis Factor Inhibitors and the Risk of Hospitalization or Death Among Patients With Immune-Mediated Inflammatory Disease and COVID-19. JAMA Netw Open. 2021;4(10):e2129639.
80. Shakoory B, Carcillo JA, Chatham WW, Amdur RL, Zhao H, Dinarello CA, et al. Interleukin-1 Receptor Blockade Is Associated With Reduced Mortality in Sepsis Patients With Features of Macrophage Activation Syndrome: Reanalysis of a Prior Phase III Trial. Crit Care Med. 2016;44(2):275-81.
81. Higgins AM, Berry LR, Lorenzi E, Murthy S, McQuilten Z, Mouncey PR, et al. Long-term (180-Day) Outcomes in Critically Ill Patients With COVID-19 in the REMAP-CAP Randomized Clinical Trial. Jama. 2023;329(1):39-51.
82. Cugno M, Meroni PL, Gualtierotti R, Griffini S, Grovetti E, Torri A, et al. Complement activation in patients with COVID-19: A novel therapeutic target. J Allergy Clin Immunol. 2020;146(1):215-7.
83. Manthey HD, Woodruff TM, Taylor SM, Monk PN. Complement component 5a (C5a). Int J Biochem Cell Biol. 2009;41(11):2114-7.
84. Chouaki Benmansour N, Carvelli J, Vivier E. Complement cascade in severe forms of COVID-19: Recent advances in therapy. Eur J Immunol. 2021;51(7):1652-9.
85. Han H, Yang L, Liu R, Liu F, Wu KL, Li J, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 2020;58(7):1116-20.
86. Driggin E, Madhavan MV, Bikdeli B, Chuich T, Laracy J, Biondi-Zoccai G, et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J Am Coll Cardiol. 2020;75(18):2352-71.
87. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094-9.
88. Nopp S, Moik F, Jilma B, Pabinger I, Ay C. Risk of venous thromboembolism in patients with COVID-19: A systematic review and meta-analysis. Res Pract Thromb Haemost. 2020;4(7):1178-91.
89. Omura S, Crump A. Ivermectin: panacea for resource-poor communities? Trends Parasitol. 2014;30(9):445-55.
90. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;178:104787.
91. Chaccour C, Hammann F, Ramón-García S, Rabinovich NR. Ivermectin and COVID-19: Keeping Rigor in Times of Urgency. Am J Trop Med Hyg. 2020;102(6):1156-7.
92. Xin G, Wei Z, Ji C, Zheng H, Gu J, Ma L, et al. Metformin Uniquely Prevents Thrombosis by Inhibiting Platelet Activation and mtDNA Release. Sci Rep. 2016;6:36222.
93. Karam BS, Morris RS, Bramante CT, Puskarich M, Zolfaghari EJ, Lotfi-Emran S, et al. mTOR inhibition in COVID-19: A commentary and review of efficacy in RNA viruses. J Med Virol. 2021;93(4):1843-6.
94. Wei XB, Wang ZH, Liao XL, Guo WX, Wen JY, Qin TH, et al. Efficacy of vitamin C in patients with sepsis: An updated meta-analysis. Eur J Pharmacol. 2020;868:172889.
95. Aranow C. Vitamin D and the immune system. J Investig Med. 2011;59(6):881-6.
96. te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010;6(11):e1001176.
97. NIH. Critical Care for Adults: NIH; 2024 [Available from: https://www.covid19treatmentguidelines.nih.gov/management/critical-care-for-adults/.
98. Bakanlığı TCS. COVID-19 Rehberi 2024 [Available from: https://covid19.saglik.gov.tr/TR-66301/covid-19-rehberi.html.
99. Hallifax RJ, Porter BM, Elder PJ, Evans SB, Turnbull CD, Hynes G, et al. Successful awake proning is associated with improved clinical outcomes in patients with COVID-19: single-centre high-dependency unit experience. BMJ Open Respir Res. 2020;7(1).
100. Wozniak H, Le Terrier C, Primmaz S, Suh N, Lenglet S, Thomas A, et al. Association of Trace Element Levels with Outcomes in Critically Ill COVID-19 Patients. Nutrients. 2023;15(15).
101. Herrera-Quintana L, Vázquez-Lorente H, Gamarra-Morales Y, Molina-López J, Planells E. Evolution of Status of Trace Elements and Metallothioneins in Patients with COVID-19: Relationship with Clinical, Biochemical, and Inflammatory Parameters. Metabolites. 2023;13(8).
102. Albalawi SA, Albalawi RA, Albalawi AA, Alanazi RF, Almahlawi RM, Alhwity BS, et al. The Possible Mechanisms of Cu and Zn in the Treatment and Prevention of HIV and COVID-19 Viral Infection. Biol Trace Elem Res. 2024;202(4):1524-38.
103. Domingo JL, Marquès M. The effects of some essential and toxic metals/metalloids in COVID-19: A review. Food Chem Toxicol. 2021;152:112161.
104. Skalny AV, Timashev PS, Aschner M, Aaseth J, Chernova LN, Belyaev VE, et al. Serum Zinc, Copper, and Other Biometals Are Associated with COVID-19 Severity Markers. Metabolites. 2021;11(4).
105. Bagher Pour O, Yahyavi Y, Karimi A, Khamaneh AM, Milani M, Khalili M, et al. Serum trace elements levels and clinical outcomes among Iranian COVID-19 patients. Int J Infect Dis. 2021;111:164-8.
106. Todi S, Ghosh S. A Comparative Study on the Outcomes of Mechanically Ventilated COVID-19 vs Non-COVID-19 Patients with Acute Hypoxemic Respiratory Failure. Indian J Crit Care Med. 2021;25(12):1377-81.
107. Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, et al. Hematological findings and complications of COVID-19. Am J Hematol. 2020;95(7):834-47.
108. Ruscitti P, Giacomelli R. Ferritin and Severe COVID-19, from Clinical Observations to Pathogenic Implications and Therapeutic Perspectives. Isr Med Assoc J. 2020;22(8):516-8.
109. Percival SS. Copper and immunity. Am J Clin Nutr. 1998;67(5 Suppl):1064s-8s.
110. Corkins MR. Copper metabolism and pediatric cholestasis. Curr Opin Clin Nutr Metab Care. 2011;14(6):642-6.
111. Rozemeijer S, Hamer HM, Heijboer AC, de Jonge R, Jimenez CR, Juffermans NP, et al. Micronutrient Status of Critically Ill Patients with COVID-19 Pneumonia. Nutrients. 2024;16(3).
112. Piacenza F, Giacconi R, Costarelli L, Basso A, Bürkle A, Moreno-Villanueva M, et al. Age, Sex, and BMI Influence on Copper, Zinc, and Their Major Serum Carrier Proteins in a Large European Population Including Nonagenarian Offspring From MARK-AGE Study. J Gerontol A Biol Sci Med Sci. 2021;76(12):2097-106.
113. Zou Y, Wu S, Xu X, Tan X, Yang S, Chen T, et al. Cope with copper: From molecular mechanisms of cuproptosis to copper-related kidney diseases. Int Immunopharmacol. 2024;133:112075.
114. Vanek VW, Borum P, Buchman A, Fessler TA, Howard L, Jeejeebhoy K, et al. A.S.P.E.N. position paper: recommendations for changes in commercially available parenteral multivitamin and multi-trace element products. Nutr Clin Pract. 2012;27(4):440-91.
115. Li M, Tang S, Velkov T, Shen J, Dai C. Copper exposure induces mitochondrial dysfunction and hepatotoxicity via the induction of oxidative stress and PERK/ATF4 -mediated endoplasmic reticulum stress. Environ Pollut. 2024;352:124145.
116. Karakus M, Pantet O, Charrière M, Favre D, Gaide O, Berger MM. Nutritional and metabolic characteristics of critically ill patients admitted for severe toxidermia. Clin Nutr. 2023;42(6):859-68.
117. Cho YS, Moon JM, Jeong YH, Lee DH, Chun BJ. Successful extracorporeal life support in respiratory failure after copper sulphate ingestion. Natl Med J India. 2018;31(2):83-5.
118. Gupta D, Kerai S, Budoo MS. A fatal and deceiving case of copper sulphate poisoning. Indian J Anaesth. 2018;62(10):819-20.
119. Ben-Hamouda N, Charrière M, Voirol P, Berger MM. Massive copper and selenium losses cause life-threatening deficiencies during prolonged continuous renal replacement. Nutrition. 2017;34:71-5.
120. Berger MM. Nutrition and Micronutrient Therapy in Critical Illness Should Be Individualized. JPEN J Parenter Enteral Nutr. 2020;44(8):1380-7.
121. Higgins TL, Murray M, Kett DH, Fulda G, Kramer KM, Gelmont D, et al. Trace element homeostasis during continuous sedation with propofol containing EDTA versus other sedatives in critically ill patients. Intensive Care Med. 2000;26 Suppl 4:S413-21.
122. Li Q, Liao J, Lei C, Shi J, Zhang H, Han Q, et al. Metabolomics analysis reveals the effect of copper on autophagy in myocardia of pigs. Ecotoxicol Environ Saf. 2021;213:112040.
123. Li CP, Song YX, Lin ZJ, Ma ML, He LP. Essential trace elements in patients with dyslipidemia: A meta-analysis. Curr Med Chem. 2023.
124. Han X, Gao Y, Chen X, Bian C, Chen W, Yan F. Mitochondria UPR stimulation by pelargonidin-3-glucoside contributes to ameliorating lipid accumulation under copper exposure. Sci Total Environ. 2024;942:173603.
125. Wachowicz B, Krajewski T, Zbikowska H. Protective effect of ceruloplasmin against lipid peroxidation in blood platelets. Acta Biochim Pol. 1990;37(2):261-6.
126. Chen Z, Xu W, Ma W, Shi X, Li S, Hao M, et al. Clinical laboratory evaluation of COVID-19. Clin Chim Acta. 2021;519:172-82.
127. Zhu A, Zakusilo G, Lee MS, Kim J, Kim H, Ying X, et al. Laboratory parameters and outcomes in hospitalized adults with COVID-19: a scoping review. Infection. 2022;50(1):1-9.
128. Linder MC. Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics. 2016;8(9):887-905.
129. Fath MK, Naderi M, Hamzavi H, Ganji M, Shabani S, Ghahroodi FN, et al. Molecular mechanisms and therapeutic effects of different vitamins and minerals in COVID-19 patients. J Trace Elem Med Biol. 2022;73:127044.