Show simple item record

dc.contributor.authorSaygi, Elif
dc.date.accessioned2021-06-14T06:59:56Z
dc.date.available2021-06-14T06:59:56Z
dc.date.issued2019
dc.identifier.issn1855-3966
dc.identifier.urihttp://dx.doi.org/10.26493/1855-3974.1591.92e
dc.identifier.urihttp://hdl.handle.net/11655/24908
dc.description.abstractFibonacci cubes are the special subgraphs of the hypercubes. Their domination numbers and total domination numbers are obtained for some small dimensions by integer linear programming. For larger dimensions upper and lower bounds on these numbers are given. In this paper, we present the up-down degree polynomials for Fibonacci cubes containing the degree information of all vertices in more detail. Using these polynomials we define optimization problems whose solutions give better lower bounds on the domination numbers and total domination numbers of Fibonacci cubes. Furthermore, we present better upper bounds on these numbers.
dc.language.isoen
dc.relation.isversionof10.26493/1855-3974.1591.92e
dc.rightsAttribution 4.0 United States
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectdomination number
dc.subjectFibonacci cubes
dc.subjectinteger linear programming
dc.subjecttotal domination number
dc.titleOn The Domination Number And The Total Domination Number Of Fibonacci Cubes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.relation.journalArs Mathematica Contemporanea
dc.contributor.departmentMatematik ve Fen Bilimleri Eğitimi 
dc.identifier.volume16
dc.identifier.issue1
dc.description.indexWoS
dc.description.indexScopus


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 United States
Except where otherwise noted, this item's license is described as Attribution 4.0 United States