Abstract
The methods of data acquiring and processing in the 4πβ-γ coincidence counting systems for radionuclide standardization have been employed by using analogue electronic modules for decades. Since the supply and maintenance of these modules are costly, the need for the digital data acquiring and processing systems which are faster, more flexible and more reliable have been arised in parallel to the new advancements in radiation measurement systems. Achieving the signal parameters from the detector of a 4πβ-γ coincidence counting system by using a digital card and analyzing these signal parameters offline by using computer programs became an easy and innovative alternative method for the conventional analogue systems.
In this thesis, a unique software has been developed to be used as data analysis method of the 4πβ-γ coincidence counting system setup in the Radionuclide Metrology Laboratories of Turkish Atomic Energy Authority (TAEK) for absolute activity standardization. This real-time coincidence counting software includes coincidence and anticoincidence methods. Activity calculations have been performed using unique algorithms of these methods. The validation of the software were done by determining the activity values of the standart radioactive solutions including 60Co, 133Ba, 152Eu and 166mHo radionuclides separately. Some amount of radioactive solutions were used as the source and then measured in the 4πβ-γ coincidence counting system. The data achieved from the counting system were analyzed in the software. The activity values of 60Co and 133Ba, which have relatively simple decay schemes, and of 152Eu ve 166mHo, which have relatively much more complicated decay schemes, have been determined by both coincidence and anticoincidence methods in a good agreement. The relative bias values between the two methods are found as 0.3% for 60Co, 0.18% for 133Ba, 0.1% for 152Eu and 0.08% for 166mHo.
In addition, the Monte Carlo simulation of the 4πβ-γ coincidence counting system was performed, and the response functions of NaI detector for 60Co, 133Ba, 152Eu and 166mHo are determined as the detector efficiencies. The efficiency values and the experimental count rates of 60Co, 133Ba, 152Eu and 166mHo are used to calculate the activities of these radionuclides.
When the activity values of these radionuclides determined by the coincidence method, anticoincidence method and Monte Carlo method were compared, it is found that the results agree well with each other within at most 2.5% relative bias. The developed digital coincidence software is now ready to be applied to the measurements of all radionuclides having simple or complicated decay schemes in the 4πβ-γ coincidence counting system. This primary radioactivity measurement system, which is used in world’s leading radioactivity measurement laboratories, has become availbale in TAEK Radionuclide Metrology Laboratories as a result of this thesis study.
xmlui.mirage2.itemSummaryView.Collections
xmlui.dri2xhtml.METS-1.0.item-citation
Anonim, Nuclear Physics, Stability: the N-Z curve, https://a-levelphysicstutor.com/nucphys-NZ-curve.php (Erişim tarihi: 9 Temmuz 2019).
Buckman, S. M., Ius, D., Digital coincidence counting, Nucl. Inst. Meth., A369, 368-374, 1996.
International Commission on Radiation Units and Measurements (ICRU), Particle Counting in Radioactivity Measurements, ICRP Report 52, 1994.
A Handbook of Radioactivity Measurements Procedures, National Vouncil on Radiation Protection and Measurements, NCRP Report No. 58, Bethesda, Maryland, 1985.
Nichols, A. L., Nuclear decay data: Observations and reflections, Appl. Radiat. Isot., 64, 1384-1391, 2006.
Baerg, A. P., Pressurized proportional counters for coincidence measurements. Nucl. Instr. Meth. 112, 95-99, 1973(a).
Baerg, A. P., The efficiency extrapolation method in coincidence counting, Nucl. Instr. Meth., 112, 143-150, 1973(b).
Baerg, A. P., Mutiple channel 4πβγ anti-coincidence counting, Nucl. Instr. and Methods, 190, 345, 1981.
Bé, M.M., Coursol, N., Duchemin, B., Lagoutine, F., Legrand, J., Debertin, K. and Schönfeld, E., Table de radionucléides – introduction, Document CEA-ISBN 2-7272-0201-6, Commisariat à l’Énergie Atomique, France, 1999.
Bé, M. M., Christe, V., Dulieu, C., Browne, E., Chechev, V., Kuzmanko, N., Helmer, R., Nichols, A., Schönfeld, A., Dersch, R., Table of radionuclides, vol. 1-A = 1 to 150, Monographie BIPM-5, Bureau International des Poids et Mesures, 2004a.
Bé, M. M., Christe, V., Dulieu, C., Browne, E., Chechev, V., Kuzmanko, N., Helmer, R., Nichols, A., Schönfeld, A., Dersch, R., Table of radionuclides, vol. 1-A = 151 to 242, Monographie BIPM-5, Bureau International des Poids et Mesures, 2004b.
Bé, M. M., Christe, V., Dulieu, C., Browne, Baglin, C., E., Chechev, V., Kuzmanko, N., Helmer, R., Kondev, F., MacMahon, D., Lee, K. B., Table of radionuclides, vol. 3-A = 3 to 244, Monographie BIPM-5, Bureau International des Poids et Mesures, 2006.
Bobin, Ch. and Bouchard, J., A 4π(LS)β−γ coincidence system using a TDCR apparatus in the β-channel, Appl. Radiat. Isot. 64 (2006) 124.
Bryant, J., Anticoincidence counting method for standardizing radioactive materials, Int. J. Appl. Radiat. Isot., 13 (1962) 273.
Bryant, J., Advantage of anticoincidence counting for standardizing radionuclides emitting delayed gamam rays, Standardization of Radionuclides, p. 129, IAEA/STI/PUB/139, IAEA, Vienna, 1967.
Buckman, S.M., Keightley, J.D., Smith, D. and Woods, M.J., The validation of a digital coincidence counting system, Appl. Radiat. Isot. 49, 1135-1140, 1998.
Campion, P.J., The standardisation of radioisotopes by the beta-gamma coincidence method using high efficiency detectors, Int. J. Appl. Radiat. Isot. 4, 232-248, 1959.
Campion, P.J., Taylor, J.G.V. and Merritt, J.S., The efficiency tracing technique for eliminating self-absorption errors in 4pb-counting. Int. J. Appl. Radiat. Isot. 8, 8-19, 1960.
Cox, D.R. and Isham, V., A bivariate point process connected with electronic counters, Proc. Roy. Soc. Lond. A356, 149-160, 1977.
Data sheet for BC-400, BC-404, BC-408, BC-412, BC-416 premium plastic scintillators, Saint-Gobain Ceramic & Plastics, Inc., 2018.
Data sheet for 2005 scintillation preamplifier, Mirion Technologies, 2019.
Dulieu, C., Christé, V. and Bé, M.M., A website dedicated to ionising radiation metrology. Appl. Radiat. Isot. 60, 133-137, 2004.
Duran, M. T., Nedjadi, Y., Juget, F., Bochud, F., Bailat, C., Fast digital 4πβ - 4πγ coincidence counting with offline analysis at IRA, Appl. Radiat. Isot. 134, 329-336, 2018.
Gandy, A., Mesure absolue de l’activité des radionuclides par le méthode descoïnc idences bêta-gamma à l’aide de détecteurs de grande efficacité - Etude des coïncidences instrumentales, Int. J. Appl. Radiat. Isot. 11, 75-91, 1961.
Gandy, A., Mesure absolue de l’activité des radionuclides par le méthode des coïncidences bêta-gamma à l’aide de détecteurs de grande efficacité - Corrections de temps morts, Int. J. Appl. Radiat. Isot. 13, 501-513, 1962.
Grigorescu, E.L., Sahagia, M., Razdolescu, A., Luca, A. and Radwan, R.M., Standardisation of 110mAg and 75Se by the beta-efficiency extrapolation method, Appl. Radiat. Isot. 49, 1165-1170, 1998.
Photomultiplier tubes and related products, Hamamatsu Photonics K.K., Electron Tube Division, 2016.
Havelka, M., Auerbach, P., Sochorova, J., Software coincidence counting, Appl. Radiat. Isot. 56 265-268, 2002.
Havelka, M., Auerbach, P. and Sochorová, J., Standardisation of 54Mn and 65Zn using a software coincidence counting system, Appl. Radiat. Isot. 64 1215-1219, 2006.
Havelka, M., and Sochorová, J., Standardisation of 124Sb and 152Eu using software coincidence counting system, Appl. Radiat. Isot. 68 1330-4, 2010.
Hayward, R.W., On the determination of disintegration rates by the coincidence method using high efficiency detectors, Int. J. Appl. Radiat. Isot. 12 (1961) 148.
Houtermans, H. And Miguel, M., 4π-β-γ coincidence counting for the calibration of nuclides with complex decay schemes, Int. J. Appl. Radiat. Isot., 13 (1962) 137.
Hwang, H.Y, Park, T.S., Kim, K.H., Jeon, W.J., Oh, P.J., Lee, M.K., Han, K.H. and Yun, H.J., An improved method of correlation counting using a bi-dimensional data acquisition system, Nucl. Instr. and Meth. A369, 363-367, 1996a.
Hwang, H.Y., Lee, C.B., Park, T.S. and Kim, H.J., A new method of isomer lifetime measurement, Nucl. Instrum. Meth. A383, 447-450, 1996b.
Hwang, H.Y., Park, T.S., Oh, P.J., Lee, J.M. and Lee, M.K., Measurement of accidental coincidences for higher activity sources, Nucl. Instrum. Meth. A425, 488-491, 1999.
Hwang, H.Y., Park, T.S., Oh, P.J., Lee, J.M. and Han, K.H., Development of a three dimensional data acquisition method for standardisation of beta emitting radionuclides, Appl. Radiat. Isot. 52, 393-397, 2000.
Hwang, H-Y, Sung, K.S., Lee, K.B., Lee, J.M. and Park, T.S., Standardization of radionuclide by β(LS)-γ coincidence counting using the geometry variation method, Appl. Radiat. Isot. 64, 1119-1123, 2006.
Judge, S. M., Arnold, D., Chauvenet, B., Colle, R., De Felice, P., Garcia-torano, E., Watjen, U., 100 Years of radionuclide metrology, Applied Radiation and Isotopes, Volume 87, Pages 27-31, 2014.
Karam, L., International Committee for Radionuclide Metrology (ICRM), https://physics.nist.gov/ICRM/index.html, 2018 (Erişim tarihi: 28.08.2019).
Keightley, J.D., DCC data format; Report DCC/DCCDataFormat/01, National Physical Laboratory, Teddington, UK, 2002.
Keightley, J.D., Data Simulation for the validation of 4πβ−γ digital coincidence counting analysis software, Report GE/R/IM/11/05, Institute for Reference Materials and Measurements, Geel, Belgium, 2005.
Keightley, J.D., DCC_SIM: A simulation routine for the validation of 4πβ−γ digital coincidence counting software. Chapter 17 in “Applied Modeling and computations in nuclear science”., ACS Symposium Series 945, American Chemical Society, Washington, DC, USA, 2006.
Keightley, J. D., On the Development and Validation of a Digital Coincidence Counting System for the Primary Standardization of Radionuclides, Doktora Tezi, University of London, Londra, 2008.
Keightley, J.D. and Watt, G.C., Digital Coincidence Counting (DCC) and its use in the corrections for out-of-channel gamma events in 4πβ−γ Coincidence Counting, Appl. Radiat. Isot. 56, 205-210, 2002.
Knoll, G. F., Radiation Detection and Measurement, Third Edition, John Wiley & Sons, Inc., USA, 2000.
Koskinas, M.F. and Dias, M., A coincidence system for radionuclide standardization using surface barrier detectors. Nucl. Inst. Meth. A280, 327-331, 2004.
Kossert, K., Marganiec-Galazka, J., Mougeot, X., Nahle, O. J., Activity determination of 60Co and the importance of its beta spectrum, Appl. Radiat. Isot. Volume 134, P. 212-218, 2018.
MacDonald, L., Counting Statistics and Error Propagation, Nuclear Medicine Physics Lectures, Imaging Research Lab., Radiology Dept., 2011.
Müller, J. W., Counting statistics of a Poisson process with dead time, Report BIPM-111, Bureau International des Poids et Mesures, Sevres, France, 1970.
Müller, J. W., Sur la perte de coincidences vraies par un temps mort cumulatif, Rapport BIPM-77/2, 4 p., 1977(b).
NaI sintilasyon dedektörü özellikleri, 2018.
Nedjadi, Y., Elektronik posta yoluyla özel yazışma, Mart 2019.
Nedjadi, Y., Bailat, C., Bochud, F., Primary activity measurements with a 4πβ - 4πγ coincidence counting system, Appl. Radiat. Isot. 70, 249-256, 2012.
Nelson, W. R., Hirayama, H. and Rogers, D. W. O., EGS4 code system, Techical Report SLAC-265, Stanford Linear Accelerator Center, CA, USA, 1985.
Park T.S, Oh P.J, Lee M.K, Kim K.H, Jeon W.J., Ungyong Mulli 8(3) 311-316 (in Korean), 1995.
Parzen, E., Stochastic Processes, Section 4.1, San Francisco, 1962.
Photomultiplier tube series 9390B data sheet, ET Enterprises Limited, DS_9390B Issue 10, 2014.
Pomme, S., Fitzgerald, R., and Keightley, J., Uncertainty of nuclear counting, Metrologia, 52, S3-17, 2015.
Recommended data, Laboratorie National Henri Becquerel, http\\: nucleide.org/DDEP_WG/DDEPdata.htm, (Erişim tarihi: 19 Temmuz 2019).
Sahagia, M., Ivan,C., Grigorescu, E.L., Campogni, M., de Felice, P. and Fazio, A., Standardisation of 65Zn by 4πβ−γ coincidence counting method with efficiency extrapolation, Appl. Radiat. Isot. 60, 423-427, 2004.
Schönfeld, E., Janssen, H., Precise measurement of dead time, Nucl. Instr. Methods, A339, pp. 137-143, 1994.
Simpson, B.R.S. and Meyer, B.R., Standardization and half-life of 201Tl by the 4π(x,e)-γ coincidence method with liquid scintillation counting in the 4π-channel, Appl. Radiat. Isot. 45, 669-673, 1994.
Smith, D., Improved correction formulae for coincidence counting, Nucl. Inst. and Methods, 152, 505-519, 1978.
Smith, D., Some developments in the Cox-Isham theory of coincidence corrections, including the extension to the computer-discrimination method, Appl. Radiat. Isot. 38, 813-821, 1987.
Unno, Y., Sanami, T., Sasaki, S., Hagiwara, M., Yunoki, A., Evaluation of absolute measurement using a 4π plastic scintillator for the 4πβ-γ coincidence counting method, Appl. Radiat. Isot. 134, 302-306, 2018.
User manual for DT5730-DT5725 digitizers, CAEN Electronic Instrumentation, 2016.
User manual UM5960 for CoMPASS multiparametric DAQ software, CAEN Electronic Instrumentation, 2018.
Williams, A., Campin, P. J., On the relative time distribution of pulses in the 4πβ-γ coincidence technique, Int. J. Appl. Radiat. Isot. 16, 555, 1965.