Abstract
In this thesis, it is studied how the B¨acklund transformations of nonlinear partial differential
equations are obtained and deriving new solutions from the known solutions by
using these transformations with the superposition formulas obtained via the permutability
conditions of the equations. Particularly, for some nonlinear partial differential
equations which are well known in mathematical physics, the importance of B¨acklund
transformations is emphasized by showing that one can derive N-solitons from 1-soliton
solutions. For this purpose, Hirota D-operator and Hirota method that are used to obtain
B¨acklund transformations are also explained. Within this context Korteweg-de
Vries (KdV), Sine-Gordon (SG) and Boussinesq equations are analyzed in detail.
xmlui.mirage2.itemSummaryView.Collections
xmlui.dri2xhtml.METS-1.0.item-citation
[1] Russell S. J., Fourteenth meeting of the British association of the advancement of
science, Report on waves, 311-390, eds. John Murray, London, 1844
[2] Bour E., Th´eorie de la d´eformation des surfaces, J. Ecole Imperiale Polytechnique,
19, 1-48, 1862
[3] Frenkel J., Kontorova T., On theory of plastic deformation and twinning, Izvestiya
Akademii Nauk SSSR, Seriya Fizicheskaya, 1, 137-149, 1939
[4] Boussinesq J., Th´eorie g´en´erale des mouvements qui sont propag´es dans un canal
rectangulaire horizontal, C. R. Acad. Sc. Paris, 73, 256–260, 1871
[5] Kirby J.T., Advances in Coastal Modeling, V. C. Lakhan (ed), chapter Boussinesq
models and applications to nearshore wave propagation, surfzone processes and
wave-induced currents, 1–41, Elsevier, 2003
[6] Boussinesq J., Th´eorie des ondes et des remous qui se propagent le long d’un
canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal
des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17,
55–108, 1872
[7] Korteweg D. J., de Vries G., On the change form of long waves advancing in
rectangular canal and on a new type of long stationary waves, Philos. Mag. Ser. 5,
39, 422-443, 1895
[8] Zabusky N. J., Kruskal M. D., Interaction of solitons in a collisionless plasma and
the recurrence of initial states, Phys. Rev. Lett., 15, 240-243, 1965
[9] Gardner C. S., Greene J. M., Kruskal M. D., Miura M. D., Method for solving the
Korteweg-de Vries equation, Phys. Rev. Lett., 19, 1095-1097, 1967
[10] Lax P. D., Integrals of nonlinear equations of evolution and solitary waves, Commun.
Pure Appl. Math., 21, 467-490, 1968
[11] Hirota R., Exact solution of the Korteweg-de Vries equation for multiple collisions
of solitons, Phys. Rev. Lett., 27, 1192, 1971
[12] Hirota R., Exact solution of the modified Korteweg-de Vries equation for multiple
collisions of solitons, J. Phys. Soc. Japan, 33, 1456, 1972
[13] Hirota R., Exact solution of the sine-Gordon equation for multiple collisions of
solitons, J. Phys. Soc. Japan, 33, 1459, 1972
[14] Hirota R., Exact envelope-soliton solutions of a nonlinear wave equation, J. Math.
Phys., 14, 805-809, 1973
[15] Hirota R., Exact N-soliton solution of a nonlinear lumped network equation, J.
Phys. Soc. Japan, 35, 286-288, 1973
[16] Bianchi L., Sulla trasformazione di B¨acklund per le superficie pseudesferiche,
Rend. Acad. Naz. Lincei, 1, 3-12, 1892
[17] B¨acklund A. V., Zur theorie der partiellen differential gleichungen erster ordnung,
Math. Ann., 17, 285–328, 1880
[18] Hirota R., A new form of B¨acklund transformation and its relation to the inverse
scattering problem, Prog. Theor. Phys., 52, 1498 1974
[19] Wadati M., Sanuki H., Konno K., Relationships among inverse method, B¨acklund
transformation and an infinite number of conservation Laws, Prog. Theor. Phys.,
53, 419, 1975
[20] Chen H. H., General derivation of B¨acklund transformations from inverse scattering
problems, Phys. Rev. Lett., 33, 925-928, 1974
[21] Chen H. H., Relation between B¨acklund transformations and inverse scattering
problems, in B¨acklund Transformations, Ed. R. M. Miura, Lecture Notes in Mathematics
515, Springer-Verlag, New York, 1976
[22] Ablowitz M. J., Kaup D. J., Newell A. J., Segur H., The inverse scattering
transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., 53, 249-
315, 1974
[23] Wadati M., Konno K., Simple derivation of B¨acklund transformation from Ricatti
form of inverse method, Prog. Theor. Phys., 53(6), 1652-1656, 1975
[24] Lamb G. L., B¨acklund transformations for certain nonlinear evolution equations,
J. Math. Phys., 15, 2157-2165, 1974
[25] Lamb G. L., B¨acklund transformations at the turn of the century, in B¨acklund
Transformations, Ed. R. M. Miura, Lecture Notes in Math., 515, Springer, New
York, 1976
[26] Bianchi L., Lezioni de geometria differenziale, vol. ii, Pisa, 1902
[27] Lamb G. L., Analytical descriptions of ultrashort optical pulse propagation in a
resonant medium, Rev. Mod. Phys., 43, 99-124, 1971
[28] Wahlquist D., Estabrook F. B., B¨acklund Transformation for Solution of the
Korteveg-de Vries Equation, Phys. Rev. Lett., 31, 1973
[29] Tu G., B¨acklund transformation and conservation laws of Boussinesq equation,
Acta Math. Appl. Sinica 4 (in Chinese) 1981
[30] Rogers C., Shadwick W. F., B¨acklund Transformation and Their Applications,
Academic Press, Newyork, 1982
[31] Xun-Cheng H. A two-parameter B¨acklund Transformation for the Boussinesq Equation,
J. Phys. A: Math. Gen., 15, 1982
[32] Hirota R. The Direct Method in Soliton Theory, Cambridge Universty Press,
Cambridge, 2004
[33] Hietarinta J. Introduction to the Hirota Bilinear Method, arXiv:solv1-int/9708006,
1997
[34] Pekcan A. The Hirota Direct Method, Master’s Thesis, Bilkent University, Ankara,
2005
[35] Goldstein P. P., Hints on the Hirota Bilinear Method, Acta Physica Polonica A,
112, 2007
[36] Ablowitz M. J., Segur H., Solitons and the Inverse Scattering Transform, Soc. Ind.
App. Math., USA, 1981
[37] Darboux G., Sur I’´equation aux d´eriv´ees partielles des surfaces `a courbure constante,
C. R. Acad. Sc., Paris, 97, 946-949, 1883
[38] Conte R., Musette M., The Painlev´e Handbook, Springer, 2008
[39] Hirota R., Satsuma J. A Simple of Superposition Formula of the B¨acklund Transformation,
J. Phys. Japan, 45, 1978
[40] Miura R. M., Korteveg-de Vries Equation and Generalizations. I.A Remarkable
Explicit Nonlinear Transformation, J. Math. Phys., 9, 1202, 1968
[41] Graham W. G., B¨acklund Transformation, City University, UK, 2012
[42] Gesztezy F., Simon B., Constructing solutions of the mKdV-equation, J. Funct.
Anal., 89, 53–60, 1990
[43] Drazin P. G., Johnson R. S., Solitons: an introduction, Cambridge University
Press, Cambridge, 1996
[44] Nimmo J. J. C., Freeman N. C., A method of obtaining the N-soliton solution of
the boussinesq equation in terms of a Wronskian, Phys. Lett., 95A, No:1 1983
[45] Hirota R., Satsuma J., Nonlinear Evolution Equations Generated from the B¨acklund
Transformation for the Boussinesq Equation, Prog. Theor. Phys., 57, 1977
[46] Fordy A. P., A Historical Introduction to Solitons and B¨acklund Transformations.
In: Fordy A.P., Wood J.C. (eds) Harmonic Maps and Integrable Systems. Aspects
of Mathematics, vol E 23. Vieweg+Teubner Verlag, Wiesbaden, 1994
[47] Hirota R. A New Form of B¨acklund Transformation and Its Relation to the Inverse
Scattering Problem, Prog. Theor. Phys., 52, 1974