Abstract
Abdullayev E, The Assessment of Iterative Reconstruction Impact on
Diagnostic Image Quality, as well as Demonstration of the Entire Coronary
Artery Segments in Coronary CT Angiography, Hacettepe University,
Faculty Of Medicine, Department Of Radiology, Thesis In Radiology,
Ankara, 2017. Our objectives is determine the effect of “Iterative Reconstruction
in Image Space” (IRIS) on image quality by comparing Noise, signal-to-noise
ratio (SNR), contrast-to-noise ratio (CNR) of standard filtered back projection
(FBP) and IRIS algorithm when evaluating coronary arteries and segmental
branches during coronary computed tomographic (CT) angiography. Our
prospective study population consisted of 250 consecutive patients who
underwent coronary CTA for different reasons. Cardiac CT angiography was
performed on a dual-source CT with retrospective ECG-gating and prospective
ECG-triggering. Comparisons of paired results between FBP and IRIS images
were analyzed in terms of image quality in coronary artery segmental branches.
Noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) were obtained
using the repeated measures from the same locations in both recontractions.
Even though it was not the main goal of our study, the effect of dose
reduction was also observed in our study. Another finding in our study is that
IRIS significantly reduces the image noise and increases SNR and CNR values (p
<0.001). Coronary artery segments were visually assessed by two blinded readers
in both FBP and IRIS. Image quality was graded using a five-point Likert scale.
Average interobserver compliance was 69.52% (ĸ=0.528-0.536, p<0.001). IRIS
significantly improved the image quality of proximal arterial segments, has not
signifitiant impact on better visulization of distal branches.
xmlui.mirage2.itemSummaryView.Collections
xmlui.dri2xhtml.METS-1.0.item-citation
1. Pontone G, Andreini D, Bartorelli AL, Cortinovis S, Mushtaq S, Bertella E, ve
ark. Diagnostic accuracy of coronary computed tomography angiography: a
comparison between prospective and retrospective electrocardiogram triggering.
Journal of the American College of Cardiology. 2009;54(4):346-55.
2. Pugliese F, Mollet NR, Runza G, van Mieghem C, Meijboom WB, Malagutti P, ve
ark. Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in
patients with stable angina pectoris. European radiology. 2006;16(3):575-82.
3. Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R, Decramer I, Van Hoe LR,
Wijns W, ve ark. Diagnostic performance of multidetector CT angiography for
assessment of coronary artery disease: meta-analysis. Radiology. 2007;244(2):419-28.
4. Lehmkuhl L, Herz F, Foldyna B, Nagel HD, Grothoff M, Nitzsche S, ve ark.
Diagnostic performance of prospectively ECG triggered versus retrospectively ECG
gated 64-slice computed tomography coronary angiography in a heterogeneous
patient population. European journal of radiology. 2011;80(2):342-8.
5. Sun Z, Lin C, Davidson R, Dong C, Liao Y. Diagnostic value of 64-slice CT
angiography in coronary artery disease: a systematic review. European journal of
radiology. 2008;67(1):78-84.
6. Leschka S, Alkadhi H, Plass A, Desbiolles L, Grunenfelder J, Marincek B, et al.
Accuracy of MSCT coronary angiography with 64 slice technology: first experience.
Eur Heart J 2005; 26: 1482-7.
7. Mollet NR, Cademartiri F, van Mieghem CA, Runza G, McFadden EP, Baks T, et
al. High- resolution spiral computed tomography coronary angiography in patients
referred for diagnostic conventional coronary angiography. Circulation 2005; 112:
2318-23.
8. Leber AW, Johnson T, Becker A, von Ziegler F, Tittus J, Nikolaou K, et al.
Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients
with an intermediate pretest likelihood for coronary artery disease. Eur Heart J 2007;
28: 2354-60.
9. Sabarudin A, Sun Z, Ng KH. A systematic review of radiation döşe associated
with different generations of multidetector CT coronary angiography. J Med Imaging
Radiat Oncol 2012; 56: 5-17.
10. Kalender WA, Wolf H, Suess C, Gies M, Greess H, Bautz WA. Dose reduction
in CT by on-line tube current control: principles and validation on phantoms and
cadavers. Eur Radiol 1999; 9: 323-8.
11. Hausleiter J, Martinoff S, Hadamitzky M, Martuscelli E, Pschierer I, Feuchtner
GM, et al. Image quality and radiation exposure with a low tube voltage protocol for
coronary CT angiography results of the PROTECTION II Trial. JACC Cardiovasc
Imag 2010; 3: 1113-23.
12. Stolzmann P, Leschka S, Scheffel H, Krauss T, Desbiolles L, Plass A,et al. Dual53
source CT in step-and-shoot mode: noninvasive coronary angiography with low
radiation dose. Radiology 2008; 249: 71-80.
13. Park EA, Lee W, Kim KW, Kim KG, Thomas A, Chung JW, et al. Iterative
reconstruction of dual-source coronary CT angiography: assessment of image quality
and radiation dose. Int J Cardiovasc Imaging 2012; 28: 1775-86.
14. Leipsic J, Heilbron BG, Hague C. Iterative reconstruction for coronary CT
angiography: finding its way. Int J Cardiovasc Imaging 2012; 28: 613-20.
15. Sheth T, Dodd JD, Hoffmann U, Abbara S, Finn A, Gold HK, et al. Coronary
stent assessability by 64 slice multi-detector computed tomography. Catheter
Cardiovasc Interv 2007; 69: 933-8.
16. Edwards W. Anatomy of the cardiovascular system. Clinical Medicine. 1984;6:1-24.
17. Paç M, Akçevin A, Aykut Aka A, Buket S, Sarıoğlu T, Solak H, ve ark. Damar
Cerrahisi Kalbin Cerrahi Anatomisi Chapter 1. Sayfa.
18. Kayan M, Yavuz T, Munduz M, Türker Y, Yeşildağ A, Etli M, ve ark.
Evaluation of coronary artery anomalies using 128-Slice computed tomography.
Türk Göğüs Kalp Damar Cerrahisi Dergisi. 2012;20(3):480-7.
19. Pannu HK, Flohr TG, Corl FM, Fishman EK. Current concepts in multi-detector
row CT evaluation of the coronary arteries: principles, techniques, and anatomy.
Radiographics : a review publication of the Radiological Society of North America,
Inc. 2003;23 Spec No:S111-25.
20. van Buuren F, Horstkotte D. [21st report about the statistics of the heart
catheterization laboratory in the German Federal Republic. Results of the joint
inquiry of the Commission for Clinical Cardiology and of the Working Groups for
Interventional Cardiology and Angiology of the German Society for Cardiology and
Circulatory Research in the year 2004]. Clinical research in cardiology : official
journal of the German Cardiac Society. 2006;95(7):383-7.
21. Giroud D, Li JM, Urban P, Meier B, Rutishauer W. Relation of the site of acute
myocardial infarction to the most severe coronary arterial stenosis at prior
angiography. The American journal of cardiology. 1992;69(8):729-32.
22. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden
coronary death: a comprehensive morphological classification scheme for
atherosclerotic lesions. Arteriosclerosis, thrombosis, and vascular biology.
2000;20(5):1262-75.
23. Juergens KU, Grude M, Fallenberg EM, Opitz C, Wichter T, Heindel W, ve ark.
Using ECG-gated multidetector CT to evaluate global left ventricular myocardial
function in patients with coronary artery disease. AJR American journal of
roentgenology. 2002;179(6):1545-50.
24. Mochizuki T, Hosoi S, Higashino H, Koyama Y, Mima T, Murase K.
Assessment of coronary artery and cardiac function using multidetector CT.
Seminars in ultrasound, CT, and MR. 2004;25(2):99-112.
25. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG. Coronary
plaque classification with intravascular ultrasound radiofrequency data analysis.Circulation. 2002;106(17):2200-6.
26. Weinsaft JW, Klem I, Judd RM. MRI for the assessment of myocardial viability.
Magnetic resonance imaging clinics of North America. 2007;15(4):505-25.
27. TURGUT B, ERSELCAN T. Koroner Arter Hastalığında Miyokard Perfüzyon
SPECT Görüntülemenin Önemi Ve Nükleer Kardiyolojik Uygulamalar. C. Ü. Tıp
Fakültesi Dergisi 2002;24(4): 215 –224.
28. Schroter G, Schneider-Eicke J, Schwaiger M. Assessment of tissue viability with
fluorine-18-fluoro-2-deoxyglucose (FDG) and carbon-11-acetate PET imaging. Herz.
1994;19(1):42 50.
29. Kopp AF, Schroeder S, Kuettner A, Baumbach A, Georg C, Kuzo R, ve ark.
Non-invasive coronary angiography with high resolution multidetector-row
computed tomography. Results in 102 patients. European heart journal.
2002;23(21):1714-25.
30. Nieman K, Rensing BJ, van Geuns RJ, Munne A, Ligthart JM, Pattynama PM, ve
ark. Usefulness of multislice computed tomography for detecting obstructive
coronary artery disease. The American journal of cardiology. 2002;89(8):913-8.
31. Sun Z, Jiang W. Diagnostic value of multislice computed tomography
angiography in coronary artery disease: a meta-analysis. European journal of
radiology. 2006;60(2):279-86.
32. Raff GL, Gallagher MJ, O'Neill WW, Goldstein JA. Diagnostic accuracy of
noninvasive coronary angiography using 64-slice spiral computed tomography.
Journal of the American College of Cardiology. 2005;46(3):552-7.
33. Mollet NR, Cademartiri F, Krestin GP, McFadden EP, Arampatzis CA, Serruys
PW, ve ark. Improved diagnostic accuracy with 16-row multi-slice computed
tomography coronary angiography. Journal of the American College of Cardiology.
2005;45(1):128-32.
34. Ong TK, Chin SP, Liew CK, Chan WL, Seyfarth MT, Liew HB, ve ark.
Accuracy of 64-row multidetector computed tomography in detecting coronary artery
disease in 134 symptomatic patients: influence of calcification. American heart
journal. 2006;151(6):1323 e1-6.
35. Achenbach S, Ropers D, Kuettner A, Flohr T, Ohnesorge B, Bruder H, ve ark.
Contrast-enhanced coronary artery visualization by dual-source computed
tomography--initial experience. European journal of radiology. 2006;57(3):331-5.
36. Johnson TR, Nikolaou K, Wintersperger BJ, Leber AW, von Ziegler F, Rist C, ve
ark. Dual-source CT cardiac imaging: initial experience. European radiology.
2006;16(7):1409-15.
37. Dewey M, Zimmermann E, Deissenrieder F, Laule M, Dubel HP, Schlattmann P,
ve ark. Noninvasive coronary angiography by 320-row computed tomography with
lower radiation exposure and maintained diagnostic accuracy: comparison of results
with cardiac catheterization in a head-to-head pilot investigation. Circulation.
2009;120(10):867-75.
38. Rybicki FJ, Otero HJ, Steigner ML, Vorobiof G, Nallamshetty L, Mitsouras D,
ve ark. Initial evaluation of coronary images from 320-detector row computed
tomography. The international journal of cardiovascular imaging. 2008;24(5):535-46.
39. Sun Z. Multislice CT angiography in cardiac imaging: prospective ECG-gating or
retrospective ECG-gating? Biomedical imaging and intervention journal.
2010r;6(1):e4.
40. Sun Z, Ng KH. Multislice CT angiography in cardiac imaging. Part III: radiation
risk and dose reduction. Singapore medical journal. 2010;51(5):374-80.
41. Hausleiter J, Meyer T, Hermann F, Hadamitzky M, Krebs M, Gerber TC, ve ark.
Estimated radiation dose associated with cardiac CT angiography. JAMA : the
journal of the American Medical Association. 2009;301(5):500-7.
42. Deetjen A, Mollmann S, Conradi G, Rolf A, Schmermund A, Hamm CW, ve ark.
Use of automatic exposure control in multislice computed tomography of the
coronaries: comparison of 16-slice and 64-slice scanner data with conventional
coronary angiography. Heart. 2007;93(9):1040-3.
43. Jakobs TF, Becker CR, Ohnesorge B, Flohr T, Suess C, Schoepf UJ, ve ark.
Multislice helical CT of the heart with retrospective ECG gating: reduction of
radiation exposure by ECG-controlled tube current modulation. European radiology.
2002;12(5):1081-6.
44. Hirai N, Horiguchi J, Fujioka C, Kiguchi M, Yamamoto H, Matsuura N, ve ark.
Prospective versus retrospective ECG-gated 64-detector coronary CT angiography:
assessment of image quality, stenosis, and radiation dose. Radiology.
2008;248(2):424-30.
45. Hsieh J, Londt J, Vass M, Li J, Tang X, Okerlund D. Step-and-shoot data
acquisition and reconstruction for cardiac x-ray computed tomography. Medical
physics. 2006;33(11):4236-48.
46. Husmann L, Valenta I, Gaemperli O, Adda O, Treyer V, Wyss CA, ve ark.
Feasibility of low-dose coronary CT angiography: first experience with prospective
ECG-gating. European heart journal. 2008;29(2):191-7.
47. Shuman WP, Branch KR, May JM, Mitsumori LM, Lockhart DW, Dubinsky TJ,
ve ark. Prospective versus retrospective ECG gating for 64-detector CT of the
coronary arteries: comparison of image quality and patient radiation dose. Radiology.
2008;248(2):431-7.
48. Xu L, Yang L, Zhang Z, Li Y, Fan Z, Ma X, ve ark. Low-dose adaptive
sequential scan for dual-source CT coronary angiography in patients with high heart
rate: comparison with retrospective ECG gating. European journal of radiology.
2010;76(2):183-7.
49. Klass O, Jeltsch M, Feuerlein S, Brunner H, Nagel HD, Walker MJ, ve ark.
Prospectively gated axial CT coronary angiography: preliminary experiences with a
novel low-dose technique. European radiology. 2009;19(4):829-36.
50. Herzog C, Zwerner PL, Doll JR, Nielsen CD, Nguyen SA, Savino G, ve ark.
Significant coronary artery stenosis: comparison on per-patient and per-vessel or persegment
basis at 64-section CT angiography. Radiology. 2007;244(1):112-20.
51. Muhlenbruch G, Seyfarth T, Soo CS, Pregalathan N, Mahnken AH. Diagnostic value of 64-slice multi-detector row cardiac CTA in symptomatic patients. European radiology. 2007;17(3):603-9.
52. Ohnesorge B, Flohr T, Becker C ve ark. Cardiac imaging by means of electrocardiographically gated multisection spiral CT: initial experience.Radiology. 2000;217:564-71.
53. Ohnesorge B, Flohr TG, Becker CR, Knez A, Reiser MF. Multi-slice and
dual-source CT in cardiac imaging:principles-protocols-indications-outlook.
İkinci Baskı. Springer-Verlag Berlin Heidelberg 2007 Almanya.
54. Pannu HK, Flohr TG, Corl FM, Fishman EK. Current concepts in multidetector
row CT evaluation of the coronary arteries: principles, techniques,
and anatomy. Radiographics. 2003; 23: S111-25.
55. McCollough CH, Morin RL. The technical design and performance of
ultrafast computed tomography. Radiol Clin North Am.1994;32:521-36.
56. Schoepf UJ, Becker CR, Ohnesorge BM ve ark. CT of coronary artery
disease. Radiology. 2004;232:18-37.
57. Kopp AF, Küttner A, Heuschmid M ve ark. Multidetector-row CT cardiac
imaging with 4 and 16 slices for coronary CTA and imaging of
atherosclerotic plaques. Eur Radiol. 2002;12 :S17-24.
58. Kopp AF, Schroeder S, Kuettner A ve ark. Coronary arteries: retrospectively
ECG-gated multi-detector row CT angiography with selective optimization of
the image reconstruction window. Radiology. 2001;221:683-8.
59. Cademartiri F, Mollet NR, Runza G ve ark. Improving diagnostic accuracy of
MDCT coronary angiography in patients with mild heart rhythm irregularities
using ECG editing. Am J Roentgenol. 2006;186:634-8.
60. Kalender WA. X-ray computed tomography. Phys Med Biol. 2006;51:29-43.
61. Kalender WA. CT: the unexpected evolution of an imaging modality. Eur
Radiol. 2005;15:21-4.
62. Flohr TG, Schoeph UJ, Ohnesorge BM. Chasing the heart:new developments
for cardiac CT. J Thorac Imaging. 2007;22:4-16.
63. Flohr TG, McCollough CH, Bruder H ve ark. First performance evaluation of
a dual-source CT ( DSCT ) system. Eur Radiol. 2006;16: 256-68.
64. Boyd DP. Transmission computed tomography ( Newton T, Potts DG.
Radiology of the skull and brain. Technical aspects of computed tomography
1981 5.cilt: 4357-4371. Mosby St. Louis )
65. Robb RA, Ritman EL. High speed synchronous volume computed
tomography of the heart. Radiology. 1979;133:655-61.
66. Ritman EL, Kinsey JH, Robb RA ve ark. Three-dimensional imaging of the
heart, lungs, and circulation. Science. 1980;210:273-80.
67. Flohr TG, Stierstorfer K, Ulzheimer S ve ark. Image reconstruction and image
quality evaluation for a 64-slice CT scanner with z-flying focal spot. Med
Phys. 2005;32: 2536-2547.
68. Johnson TR, Krauss B, Sedlmair M ve ark. Material differentiation by dual
energy CT: initial experience. Eur Radiol. 2007;17:1510-7.
69. Graser A, Johnson TR, Bader M ve ark. Dual Energy CT Characterization of
Urinary Calculi: Initial In Vitro and Clinical Experience. Invest Radiol.2008;43:112-119.
70. Primak AN, Fletcher JG,Vrtiska TJ ve ark. Noninvasive differentiation of uric
acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol.
2007;14:1441-7.
71. Scheffel H, Stolzmann P, Frauenfelder T ve ark. Dual-energy contrastenhanced
computed tomography for the detection of urinary stone disease.Invest Radiol.
2007;42:823-9.
72. McCollough CH, Primak AN, Saba O ve ark. Dose performance of a 64-
channel dual source CT (DSCT) Scanner. Radiology 2007;243:775-84.
73. Brasewell RN: Strip integration in radioastronomy. Aust J Phys 9: 198-217, 1956
74. Brasewell RN, Wernealse SJ: Image reconstruction over a finite field of view. J
Opt Soc Am 65: 1342-1346, 1975
75. Brooks RA, Di Chiro G: Theory of ımage reconstruction in computed
tomography.Radiology 117: 561-572, 1975.
76. Cormack AM: Representation of a function by its line integrals with some
radiological applications J Appl Phys 34: 2722-2727,1963
77. Cormack AM: Representation of a function by its line integrals with some
radiological applications: II. J Appl Phys 35: 2908-2913, 1964.
78. Gordon R, Herman GT: Three dimensional reconstruction from projections: A
review of algorithms. Int Rev. Cytol 38: 111-151,1974.
79. Brasewell RN, Riddle AC: Inversion of fan-beam scans in radioastronomy.
Astrophys J 150: 427-434,1967.
80. Coulam C: The Physical Basis of Medical Imaging. New York, Appleton-
Century-Crofts, 1981.
81. Andersen AH, Kak AC. Simultaneous algebraic reconstruction technique
(SART): a superior implementation of the art algorithm. Ultrason Imaging
1984;6(1):81–94.
82. Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART)
for threedimensional electron microscopy and x-ray photography. J Theor Biol
1970;29(3):471 481.
83. Gilbert P. Iterative methods for the threedimensional reconstruction of an object
from projections. J Theor Biol 1972;36(1):105–117.
84. Grant K, Flohr T. Iterative reconstruction in image space (IRIS).
http://www.usa.siemens. com/healthcare. Published 2010. Accessed September 2013.
85. Winklehner A, Karlo C, Puippe G, et al. Raw data-based iterative reconstruction
in body CTA: evaluation of radiation dose saving potential. Eur Radiol
2011;21(12):2521–2526.
86. Baumueller S, Winklehner A, Karlo C, et al. Low-dose CT of the lung: potential
value of iterative reconstructions. Eur Radiol 2012;22(12): 2597–2606.
87. Grant K, Raupach R. SAFIRE: Sinogram affirmed iterative reconstruction.
http://www. usa.siemens.com/healthcare. Published 2012. Accessed September 2013.
88. Moscariello A, Takx RA, Schoepf UJ, et al. Coronary CT angiography: image
quality, diagnostic accuracy, and potential for radiation dose reduction using a novel
iterative image reconstruction technique-comparison with traditional filtered back
projection. Eur Radiol 2011;21(10):2130–2138.
89. Gordic S, Morsbach F, Schmidt B, et al. Ultralow-dose chest computed
tomography for pulmonary nodule detection: first performance evaluation of single
energy scanning with spectral shaping. Invest Radiol 2014;49(7): 465–473.
90. Leipsic J, Labounty TM, Heilbron B, et al. Adaptive statistical iterative
reconstruction:assessment of image noise and image qual ity in coronary CT
angiography. AJR Am J Roentgenol 2010;195(3):649–654.
91. Leipsic J, Labounty TM, Heilbron B, et al. Estimated radiation dose reduction
using adaptive statistical iterative reconstruction in coronary CT angiography: the
ERASIR study.AJR Am J Roentgenol 2010;195(3):655–660.
92. Fuchs TA, Fiechter M, Gebhard C, et al. CT coronary angiography: impact of
adapted statistical iterative reconstruction (ASIR) on coronary stenosis and plaque
composition analysis. Int J Cardiovasc Imaging 2013;29(3): 719–724.
93. Gosling O, Loader R, Venables P, et al. Acomparison of radiation doses between
stateof-the-art multislice CT coronary angiography with iterative reconstruction,
multislice CT coronary angiography with standard filtered back-projection and
invasive diagnostic coronary angiography. Heart 2010;96(12):922–926.
94. Hou Y, Liu X, Xv S, Guo W, Guo Q. Comparisons of image quality and
radiation döşe between iterative reconstruction and filtered back projection
reconstruction algorithms in 256-MDCT coronary angiography. AJR Am J
Roentgenol 2012;199(3):588–594.
95. Hou Y, Xu S, Guo W, Vembar M, Guo Q. The optimal dose reduction level
using iterative reconstruction with prospective ECG-triggered coronary CTA using
256-slice MDCT. Eur J Radiol 2012;81(12):3905–3911.
96. Park EA, Lee W, Kim KW, et al. Iterative reconstruction of dual-source coronary
CT angiography: assessment of image quality and radiation dose. Int J Cardiovasc
Imaging 2012;28(7): 1775–1786.
97. Renker M, Ramachandra A, Schoepf UJ, et al. Iterative image reconstruction
techniques: applications for cardiac CT. J Cardiovasc Comput Tomogr
2011;5(4):225–230.
98. Schuhbaeck A, Achenbach S, Layritz C, et al. Image quality of ultra-low
radiation exposure coronary CT angiography with an effective dose ,0.1 mSv using
high-pitch spiral acquisition and raw data-based iterative reconstruction. Eur Radiol
2013;23(3):597–606.
99. Yoo RE, Park EA, Lee W, et al. Image quality of adaptive iterative dose
reduction 3D of coronary CT angiography of 640-slice CT: comparison with filtered
back-projection. Int J Cardiovasc Imaging 2013;29(3):669–676.
100. Yin WH, Lu B, Hou ZH, et al. Detection of coronary artery stenosis with submilliSievert
radiation dose by prospectively ECG-triggered high-pitch spiral CT
angiography and iterative reconstruction. Eur Radiol 2013;23(11):2927–2933.
101. Chen MY, Steigner ML, Leung SW, et al. Simulated 50 % radiation dose
reduction in coronary CT angiography using adaptive iterative dose reduction in
three-dimensions (AIDR3D). Int J Cardiovasc Imaging 2013;29(5): 1167–1175.
102. Leipsic J, Nguyen G, Brown J, Sin D, Mayo JR. A prospective evaluation of
döşe reduction and image quality in chest CT using adaptive statistical iterative
reconstruction. AJR Am J Roentgenol 2010;195(5):1095–1099.
103. Pontone G, Andreini D, Bartorelli AL, et al. Feasibility and diagnostic accuracy
of a low radiation exposure protocol for prospective ECG-triggering coronary
MDCT angiography.Clin Radiol 2012;67(3):207–215.
104. Takx RA, Schoepf UJ, Moscariello A, et al. Coronary CT angiography:
comparison of a novel iterative reconstruction with filtered back projection for
reconstruction of low-dose CT-Initial experience. Eur J Radiol 2013;82(2): 275–280.
105. Yin WH, Lu B, Li N, et al. Iterative reconstruction to preserve image quality
and diagnostic accuracy at reduced radiation dose in coronary CT angiography: an
intraindividual comparison. JACC Cardiovasc Imaging 2013;6(12): 1239–1249.
106. Ebersberger U, Tricarico F, Schoepf UJ, et al. CT evaluation of coronary artery
stents with iterative image reconstruction: improvements in image quality and
potential for radiation dose reduction. Eur Radiol 2013;23(1):125–132.
107. Eisentopf J, Achenbach S, Ulzheimer S, et al.Low-dose dual-source CT
angiography with iterative reconstruction for coronary artery stent evaluation. JACC
Cardiovasc Imaging 2013;6(4):458–465.
108. Gebhard C, Fiechter M, Fuchs TA, et al. Coronary artery stents: influence of
adaptive statistical iterative reconstruction on image quality using 64-HDCT. Eur
Heart J Cardiovascular Imaging 2013;14(10):969–977.
109. Funama Y, Oda S, Utsunomiya D, et al. Coronary artery stent evaluation by
combining iterative reconstruction and high-resolution kernel at coronary CT
angiography. Acad Radiol 2012;19(11):1324–1331.
110. Min JK, Swaminathan RV, Vass M, Gallagher S, Weinsaft JW. High-definition
multidetector computed tomography for evaluation of coronary artery stents:
comparison to standarddefinition 64-detector row computed tomography. J
Cardiovasc Comput Tomogr 2009;3(4): 246–251.
111. Oda S, Utsunomiya D, Funama Y, et al. Improved coronary in-stent
visualization using a combined high-resolution kernel and a hybrid iterative
reconstruction technique at 256-slice cardiac CT-Pilot study. Eur J Radiol
2013;82(2):288–295.
112. Renker M, Nance JW Jr, Schoepf UJ, et al. Evaluation of heavily calcified
vessels with coronary CT angiography: comparison of iterative and filtered back
projection image reconstruction. Radiology 2011;260(2):390–399.
113. Gebhard C, Fiechter M, Fuchs TA, et al. Coronary artery calcium scoring:
influence of adaptive statistical iterative reconstruction using 64-MDCT. Int J
Cardiol 2013;167(6):2932–2937.
114. Kurata A, Dharampal A, Dedic A, et al. Impact of iterative reconstruction on
CT coronary calcium quantification. Eur Radiol 2013;23(12):3246–3252.
115. Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS, ve ark. A
reporting system on patients evaluated for coronary artery disease. Report of the Ad
Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular
Surgery, American Heart Association. Circulation. 1975;51(4 Suppl):5-40.
116. Hamon M, Biondi-Zoccai GG, Malagutti P, Agostoni P, Morello R,
Valgimigli M, et al. Diagnostic performance of multislice spiral computed
tomography of coronary arteries as compared with conventional invasive coronary
angiography: a meta-analysis. J Am Coll Cardiol 2006; 48: 1896-910.
117. Stein PD, Beemath A, Kayalı F, Skaf E, Sanchez J, Olson RE. Multidetector
computed tomography for the diagnosis of coronary artery disease: asystematic
review. Am J Med 2006; 119: 203-16.
118. Renker M, Nance JW Jr, Schoepf UJ, O'Brien TX, Zwerner PL,Meyer M, et al.
Evaluation of heavily calcified vessels with coronary CT angiography: comparison
of iterative and filtered back projection image reconstruction. Radiology 2011; 260:
390-9.
119. Oda S, Utsunomiya D, Funama Y, Takaoka H, Katahira K, Honda K,et al.
Improved coronary in-stent visualization using a combined high-resolution kernel
and a hybrid iterative reconstruction technique at 256-slice cardiac CT-Pilot study.
Eur J Radiol 2013; 82:288-95.
120. Mahnken AH. CT imaging of coronary stents: past, present and future. ISRN
Cardiol 2012; 2012: 139823.
121. Ebersberger U, Tricarico F, Schoepf UJ, Blanke P, Spears JR, Rowe GW, et al.
CT evaluation of coronary artery stents with iterative image reconstruction:
improvements in image quality and potential for radiation dose reduction. Eur Radiol
2013; 23: 125-32.
122. Hou Y, Liu X, Xv S, Guo W, Guo Q. Comparisons of ımage quality and
radiation dose between iterative reconstruction and filtered back projection
reconstruction algorithms in 256-MDCT coronary angiography. AJR Am J
Roentgenol 2012; 199: 588-94.
123. Wang R, Schoepf UJ, Wu R, Gibbs KP, Yu W, Li M, et al. CT coronary
angiography: Image quality with sinogram affirmed iterative reconstruction
compared with filtered back-projection. Clin Radiol 2013; 68: 272-8.
124. Hou Y, Xu S, Guo W, Vembar M, Guo Q. The optimal dose reduction level
using iterative reconstruction with prospective ECGtriggered coronary CTA using
256-slice MDCT. Eur J Radiol 2012; 81: 3905-11.
125. Bittencourt MS, Schmidt B, Seltmann M, Muschiol G, Ropers D, Daniel WG, et
al. Iterative reconstruction in image space (IRIS) in cardiac computed tomography:
initial experience. Int J Cardiovasc Imaging 2011; 27: 1081-7.
126. Ezgi Güler, Volkan Vural, Emre Ünal, Ilgaz Çağatay Köse, Deniz Akata,
Muşturay Karcaaltıncaba, Tuncay Hazırolan. Effect of iterative reconstruction on
image quality in evaluating patients with coronary calcifications or stents during
coronary computed tomography angiography: a pilot study. Anatolian J Cardiol
2016; 16: 119-24.