Traveling Wave Solutions Of Degenerate Coupled Multi-Kdv Equations

Tarih
2016Yazar
Gurses, Metin
Pekcan, Asli
- Citations
- CrossRef - Citation Indexes: 2
- Scopus - Citation Indexes: 2
- Captures
- Mendeley - Readers: 6
publications
3
supporting
0
mentioning
3
contrasting
0
3
0
3
0
Citing PublicationsSupportingMentioningContrasting
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Üst veri
Tüm öğe kaydını gösterÖzet
Traveling wave solutions of degenerate coupled l-KdV equations are studied. Due to symmetry reduction these equations reduce to one ordinary differential equation (ODE), i.e., (f')(2) = P-n(f) where P-n(f) is a polynomial function of f of degree n = l + 2, where l >= 3 in this work. Here l is the number of coupled fields. There is no known method to solve such ordinary differential equations when l >= 3. For this purpose, we introduce two different types of methods to solve the reduced equation and apply these methods to degenerate three-coupled KdV equation. One of the methods uses the Chebyshev's theorem. In this case, we find several solutions, some of which may correspond to solitary waves. The second method is a kind of factorizing the polynomial P-n(f) as a product of lower degree polynomials. Each part of this product is assumed to satisfy different ODEs. Published by AIP Publishing.