Bond Strength of a Calcium Silicate-Based Sealer Tested in Bulk or with Different Main Core Materials
Date
2014Author
Nagas, Emre
Cehreli, Zafer
Uyanık, Mehmet Ozgur
Durmaz, Veli
xmlui.mirage2.itemSummaryView.MetaData
Show full item recordAbstract
The aim of this study was to evaluate the influence of a calcium silicate-based sealer (iRoot SP), with or without a core material, on bond strength to radicular dentin, in comparison with various contemporary root filling systems. Root canals of freshly extracted single-rooted teeth (n = 60) were instrumented using rotary instruments. The roots were randomly assigned to one of the following experimental groups: (1) a calcium silicate-based sealer without a core material (bulk-fill); (2) a calcium silicate-based sealer + gutta-percha; (3) a calcium silicate-based sealer + Resilon; (4) a methacrylate resin-based sealer (Real Seal SE) + Resilon; (5) an epoxy resin-based sealer (AH Plus) + gutta-percha, and (6) a mineral trioxide aggregate-based endodontic sealer (MTA Fillapex) + gutta-percha. Four 1-mm-thick sections were obtained from the coronal aspect of each root (n = 40 slices/group). Push-out bond strength testing was performed at a cross-head speed of 1 mm/min, and the bond strength data were analyzed statistically by one-way analysis of variance and Tukey tests (p < 0.05). The highest and lowest debonding values were obtained for the calcium silicate-based sealer bulk-fill and mineral trioxide aggregate-based endodontic sealer + gutta-percha groups, respectively (p < 0.05). It was concluded that the calcium silicate-based sealer showed higher resistance to dislocation in the bulk-filled form than in conjunction with the tested core filling materials. When the calcium silicate-based sealer was placed in bulk, its dislocation resistance was similar to that of commonly used sealer + core root filling systems. Thus, the concept of using a calcium silicate-based sealer in bulk can be more easily advocated in clinical practice.