Smoking Induces Coordinated Dna Methylation and Gene Expression Changes in Adipose Tissue with Consequences for Metabolic Health
Date
2018Author
Tsai, Pei-Chien
Glastonbury, Craig A.
Eliot, Melissa N.
Yet, İdil
xmlui.mirage2.itemSummaryView.MetaData
Show full item recordAbstract
Background: Tobacco smoking is a risk factor for multiple diseases, including cardiovascular disease and diabetes.
Many smoking-associated signals have been detected in the blood methylome, but the extent to which these
changes are widespread to metabolically relevant tissues, and impact gene expression or metabolic health,
remains unclear.
Methods: We investigated smoking-associated DNA methylation and gene expression variation in adipose
tissue biopsies from 542 healthy female twins. Replication, tissue specificity, and longitudinal stability of the
smoking-associated effects were explored in additional adipose, blood, skin, and lung samples. We
characterized the impact of adipose tissue smoking methylation and expression signals on metabolic disease
risk phenotypes, including visceral fat.
Results: We identified 42 smoking-methylation and 42 smoking-expression signals, where five genes (AHRR,
CYP1A1, CYP1B1, CYTL1, F2RL3) were both hypo-methylated and upregulated in current smokers. CYP1A1 gene
expression achieved 95% prediction performance of current smoking status. We validated and replicated a
proportion of the signals in additional primary tissue samples, identifying tissue-shared effects. Smoking leaves
systemic imprints on DNA methylation after smoking cessation, with stronger but shorter-lived effects on
gene expression. Metabolic disease risk traits such as visceral fat and android-to-gynoid ratio showed
association with methylation at smoking markers with functional impacts on expression, such as CYP1A1, and
at tissue-shared smoking signals, such as NOTCH1. At smoking-signals, BHLHE40 and AHRR DNA methylation
and gene expression levels in current smokers were predictive of future gain in visceral fat upon smoking
cessation.
Conclusions: Our results provide the first comprehensive characterization of coordinated DNA methylation
and gene expression markers of smoking in adipose tissue. The findings relate to human metabolic health
and give insights into understanding the widespread health consequence of smoking outside of the lung.