Basit öğe kaydını göster

dc.contributor.advisorÜNER, MÜCAHİT KANİ
dc.contributor.authorYAŞIN, MUHAMMED HANŞEREF
dc.date.accessioned2018-12-26T10:18:53Z
dc.date.issued2018
dc.date.submitted2018-09-25
dc.identifier.citation[1] G. B. Goldstein, “False-Alarm Regulation in Log-Normal and Weibull Clutter,” IEEE Trans. Aerosp. Electron. Syst., 1973. [2] G. V. Trunk, “Further Results on the Detection of Targets in Non-Gaussian Sea Clutter,” IEEE Trans. Aerosp. Electron. Syst., 1971. [3] M. Sekine and Y. Mao, Weibull Radar Clutter. London: Peter Peregrinus, 1990. [4] J. B. Billingsley and W. A. Publishing, “Low-Angle Radar Land Clutter: Measurements and Empirical Models,” October. 2002. [5] H. M. Finn and R. S. Johnson, “Adaptive Detection Mode with Threshold Control as a Function of Spatially Sampled Clutter-Level Estimates,” RCA Rev., vol. 29, pp. 414–464, 1968. [6] D. C. Schleher, “Radar Detection in Weibull Clutter,” IEEE Trans. Aerosp. Electron. Syst., 1976. [7] R. Ravid and N. Levanon, “Maximum-likelihood CFAR for Weibull background,” IEE Proc. F - Radar Signal Process., 1992. [8] M. A. Richards, Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005. [9] A. Farina and F. A. Studer, “A review of CFAR detection techniques in radar systems,” Microw. J., 1986. [10] M. K. Uner and P. K. Varshney, “CFAR processing in nonhomogeneous background,” Proc. MELECON ’94. Mediterr. Electrotech. Conf., 1994. [11] B. Chen, P. K. Varshney, and J. H. Michels, “Adaptive CFAR Detection for Clutter-Edge Heterogeneity Using Bayesian Inference,” IEEE Trans. Aerosp. Electron. Syst., 2003. [12] A. Pourmottaghi, M. R. Taban, and S. Gazor, “A CFAR detector in a nonhomogenous Weibull clutter,” IEEE Trans. Aerosp. Electron. Syst., 2012. [13] S. Chabbi, T. Laroussi, and M. Barkat, “Performance analysis of dual automatic censoring and detection in heterogeneous Weibull clutter: A comparison through extensive simulations,” Signal Processing. 2013. [14] R. L. Streit and P. K. Willett, “Detection of random transient signals via hyperparameter estimation,” IEEE Trans. Signal Process., 1999. [15] U. C. Doyuran, “Radar Target Detection in Non-Gaussian Clutter,” METU, 2007. [16] U. C. Doyuran and Y. Tanik, “Expectation maximization-based detection in range-heterogeneous Weibull clutter,” IEEE Trans. Aerosp. Electron. Syst., 2014. [17] P. P. Gandhi and S. A. Kassam, “Analysis of CFAR Processors in Nonhomogeneous Background,” IEEE Transactions on Aerospace and Electronic Systems. 1988. [18] V. G. Hansen and J. H. Sawyers, “Detectability loss due to “greatest of selection in a cell-averaging cfar,” IEEE Trans. Aerosp. Electron. Syst., 1980. [19] G. V. Trunk, “Range resolution of targets using automatic detectors,” IEEE Trans. Aerosp. Electron. Syst., 1978. [20] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from Incomplete Data via the EM Algorithm,” J. R. Stat. Soc. Ser. B, 1977. [21] J. a. Bilmes, “A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models,” Int. Comput. Sci. Inst., 1998. [22] D. Karlis and E. Xekalaki, “Choosing initial values for the EM algorithm for finite mixtures,” Comput. Stat. Data Anal., 2003. [23] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Neural Networks, 1995. Proceedings., IEEE Int. Conf., 1995. [24] Y. Zhang, S. Wang, G. Ji, Y. Zhang, S. Wang, and G. Ji, “A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications,” Math. Probl. Eng., 2015. [25] C. B. Do and S. Batzoglou, “What is the expectation maximization algorithm?,” Nat. Biotechnol., 2008. [26] K. Train, “EM Algorithms,” in Discrete Choice Model with Simulation, 2009. [27] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal Process. Mag., 1996. [28] S. Sutar, “Parameter estimation of the modified Weibull distribution using Monte Carlo Expectation Maximization algorithm,” Model Assist. Stat. Appl., 2016. [29] L. Liang, H. Shen, P. De Camilli, D. K. Toomre, and J. S. Duncan, “Expectation- Maximization,” Neurocomputing, 2004. [30] C. Wu, “On the convergence properties of the EM algorithm,” Ann. Stat., 1983. [31] J. R. Movellan, “Tutorial on Generalized Expectation Maximization,” Interpret. A J. Bible Theol., 2004. [32] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal Process. Mag., 1996. [33] H. L. Van Trees, “Detection, estimation, and modulation theory: Detection, estimation, and linear modulation theory,” Most, 1968.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/5469
dc.description.abstractIn this thesis study, for high resolution CFAR radar systems, Expectation-Maximizaion (EM) method was applied to range heteregenous Weibull clutter to determine homogeneous regions and estimate the parameters of distributions. The number of distribution in range and their ratio, the scale and shape parameter of distributions was assumed to be unknown. Particle Swarm Optimization (PSO) algorithm was used to solve the complex nonlinear equations in EM algorithm. The performance of EM algorithm in terms of, the number of clutter regions on the environment, the ratio of the regions, the number of CFAR reference cells, the value of shape and scale parameters of the distributions, were analysed.tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectBeklenti Enbüyültmetr_TR
dc.subjectBE algoritması
dc.subjectSabit yanlış alarm oranlı sistemler
dc.subjectSYAO
dc.subjectGaussian olmayan kargaşa
dc.subjectTektür olmayan kargaşa
dc.subjectWeibull dağılımı
dc.subjectWeibull kargaşa
dc.subjectİki seviyeli kargaşa
dc.subjectÇok seviyeli kargaşa
dc.subjectEn büyük olabilirlik
dc.subjectParametre kestirimi
dc.titleTEKTÜR OLMAYAN WEIBULL DAĞILIMLI ÇEVRESEL YANSIMA ORTAMININ BEKLENTİ ENBÜYÜLTME YÖNTEMİNE DAYALI ANALİZİtr_TR
dc.title.alternativeANALYSIS OF NON-HOMOGENOUS WEIBULL DISTRIBUTED CLUTTER BASED ON EXPECTATION MAXIMIZATION METHODtr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetBu tez çalışmasında yüksek çözünürlüklü sabit yanlış alarm oranlı (SYAO) radar sistemleri için tektür olmayan ortamlarda, Weibull dağılıma sahip çevresel yansıma sinyallerinin dağılım parametrelerinin kestirilmesi ve tektür bölgelerin saptanması amacıyla Beklenti Enbüyültme yöntemi kullanılmış ve başarımı incelenmiştir. Ortamdaki dağılım sayısının, dağılım oranlarının, dağılımlarının ölçek ve şekil parametrelerinin bilinmediği varsayılmıştır. Beklenti Enbüyültme adımlarının Weibull ortama uygulanışında ortaya çıkan doğrusal olmayan denklemlerin çözümünde parçacık sürü optimizasyonu (PSO) algoritması kullanılmıştır. Ortamdaki kargaşalı bölge sayısının, kargaşalı bölgelerin oranlarının, SYAO referans hücre sayısının, dağılımların şekil ve ölçek parametrelerinin başarım üzerindeki etkisi incelenmiştir.tr_TR
dc.contributor.departmentElektrik –Elektronik Mühendisliğitr_TR
dc.contributor.authorID10220056tr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2018-12-26T10:18:53Z


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster