Özet
In this thesis study, for high resolution CFAR radar systems, Expectation-Maximizaion (EM) method was applied to range heteregenous Weibull clutter to determine homogeneous regions and estimate the parameters of distributions. The number of distribution in range and their ratio, the scale and shape parameter of distributions was assumed to be unknown. Particle Swarm Optimization (PSO) algorithm was used to solve the complex nonlinear equations in EM algorithm. The performance of EM algorithm in terms of, the number of clutter regions on the environment, the ratio of the regions, the number of CFAR reference cells, the value of shape and scale parameters of the distributions, were analysed.
Künye
[1] G. B. Goldstein, “False-Alarm Regulation in Log-Normal and Weibull Clutter,” IEEE Trans. Aerosp. Electron. Syst., 1973.
[2] G. V. Trunk, “Further Results on the Detection of Targets in Non-Gaussian Sea Clutter,” IEEE Trans. Aerosp. Electron. Syst., 1971.
[3] M. Sekine and Y. Mao, Weibull Radar Clutter. London: Peter Peregrinus, 1990.
[4] J. B. Billingsley and W. A. Publishing, “Low-Angle Radar Land Clutter: Measurements and Empirical Models,” October. 2002.
[5] H. M. Finn and R. S. Johnson, “Adaptive Detection Mode with Threshold Control as a Function of Spatially Sampled Clutter-Level Estimates,” RCA Rev., vol. 29, pp. 414–464, 1968.
[6] D. C. Schleher, “Radar Detection in Weibull Clutter,” IEEE Trans. Aerosp. Electron. Syst., 1976.
[7] R. Ravid and N. Levanon, “Maximum-likelihood CFAR for Weibull background,” IEE Proc. F - Radar Signal Process., 1992.
[8] M. A. Richards, Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.
[9] A. Farina and F. A. Studer, “A review of CFAR detection techniques in radar systems,” Microw. J., 1986.
[10] M. K. Uner and P. K. Varshney, “CFAR processing in nonhomogeneous background,” Proc. MELECON ’94. Mediterr. Electrotech. Conf., 1994.
[11] B. Chen, P. K. Varshney, and J. H. Michels, “Adaptive CFAR Detection for Clutter-Edge Heterogeneity Using Bayesian Inference,” IEEE Trans. Aerosp. Electron. Syst., 2003.
[12] A. Pourmottaghi, M. R. Taban, and S. Gazor, “A CFAR detector in a nonhomogenous Weibull clutter,” IEEE Trans. Aerosp. Electron. Syst., 2012.
[13] S. Chabbi, T. Laroussi, and M. Barkat, “Performance analysis of dual automatic censoring and detection in heterogeneous Weibull clutter: A comparison through extensive simulations,” Signal Processing. 2013.
[14] R. L. Streit and P. K. Willett, “Detection of random transient signals via hyperparameter estimation,” IEEE Trans. Signal Process., 1999.
[15] U. C. Doyuran, “Radar Target Detection in Non-Gaussian Clutter,” METU, 2007.
[16] U. C. Doyuran and Y. Tanik, “Expectation maximization-based detection in range-heterogeneous Weibull clutter,” IEEE Trans. Aerosp. Electron. Syst., 2014.
[17] P. P. Gandhi and S. A. Kassam, “Analysis of CFAR Processors in Nonhomogeneous Background,” IEEE Transactions on Aerospace and Electronic Systems. 1988.
[18] V. G. Hansen and J. H. Sawyers, “Detectability loss due to “greatest of selection in a cell-averaging cfar,” IEEE Trans. Aerosp. Electron. Syst., 1980.
[19] G. V. Trunk, “Range resolution of targets using automatic detectors,” IEEE Trans. Aerosp. Electron. Syst., 1978.
[20] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from Incomplete Data via the EM Algorithm,” J. R. Stat. Soc. Ser. B, 1977.
[21] J. a. Bilmes, “A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models,” Int. Comput. Sci. Inst., 1998.
[22] D. Karlis and E. Xekalaki, “Choosing initial values for the EM algorithm for finite mixtures,” Comput. Stat. Data Anal., 2003.
[23] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Neural Networks, 1995. Proceedings., IEEE Int. Conf., 1995.
[24] Y. Zhang, S. Wang, G. Ji, Y. Zhang, S. Wang, and G. Ji, “A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications,” Math. Probl. Eng., 2015.
[25] C. B. Do and S. Batzoglou, “What is the expectation maximization algorithm?,” Nat. Biotechnol., 2008.
[26] K. Train, “EM Algorithms,” in Discrete Choice Model with Simulation, 2009.
[27] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal Process. Mag., 1996.
[28] S. Sutar, “Parameter estimation of the modified Weibull distribution using Monte Carlo Expectation Maximization algorithm,” Model Assist. Stat. Appl., 2016.
[29] L. Liang, H. Shen, P. De Camilli, D. K. Toomre, and J. S. Duncan, “Expectation- Maximization,” Neurocomputing, 2004.
[30] C. Wu, “On the convergence properties of the EM algorithm,” Ann. Stat., 1983.
[31] J. R. Movellan, “Tutorial on Generalized Expectation Maximization,” Interpret. A J. Bible Theol., 2004.
[32] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal Process. Mag., 1996.
[33] H. L. Van Trees, “Detection, estimation, and modulation theory: Detection, estimation, and linear modulation theory,” Most, 1968.