Basit öğe kaydını göster

dc.contributor.advisorSaydam, Cemal
dc.contributor.authorRashidi, Adeleh
dc.date.accessioned2018-10-05T11:00:15Z
dc.date.issued2018-09-19
dc.date.submitted2018-08-10
dc.identifier.citationKaynaklar [1] Hewitt, Sand and water culture methods used in the study of plant nutrition, 1966. [2] Saydam ve Senyuv, «Deserts: Can They Be Potential Suppliersof Bioavailable Iron?,» Geophysical Research Letters, cilt 29, no. 11, 2002. [3] Kubilay ve Mace, «Organic Nitrogen in Rain and Aerosol in the Eastern Mediterranean Atmosphere An Association with Atmospheric Dust,» Geophysical research Atmosphere, cilt 108 (D10):, no. 4320, 2003. [4] «http://onlinelibrary.wiley.com» 2001. [Çevrimiçi]. [5] Rogora, Mosello ve Marchetto, «Long-Term Trends in the Chemistry of Atmospheric Deposition in Italy: the Role of Incrasing Saharan Dust Deposittion,» Tellus B, cilt 56, pp. 426-434, 2004. [6] Wetzel, «Biogenic structures in modern slope to deep-sea sediments in the Sulu Sea Basin‏,» Palaeogeography, Palaeoclimatology, Palaeoecology‏, pp. pp. 42.3-4: 285-304, 1983. [7] Mace, Kubilay ve Duce, «Organic Nitrogen in Rain and Aerosol in the Eastern Mediterranean Atmosphere An Association with Atmospheric Dust,» Journal of Geophysical research Atmosphere, no. 4320, p. 108, 2003. [8] Kacar, Bitki Fizyolojisi, Ankara: A. Ü. Ziraat Fak., Yayın No: 1447, 2002. [9] Zhuang, «The dissolution of atmospheric iron in surface seawater of the open ocean,» Journal of Geophysical Research Oceans, pp. 16207-16216, 1990. [10] Fung, «Climate change variable carbon sinks,» Science, cilt 290. (5495), no. 1313, 2000. [11] Tepecik, Kitap Topraksız Tarım ve Bitki Besleme Teknikler, 2016. [12] Yücekutlu, Sahra Tozunun Elementer Bileşiminin Bazı Buğday Çeşitlerinin Büyüme Parametreleri Üzerindeki Etkilerinin İncelenmesi, Ankara: Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, 2004. [13] Göral, Afganistan toprak örneklerinin bazı özelliklerinin incelenmesi, Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü. Ankara, 2004. [14] Sanin, Arısoy, Tıpırdamaz ve Sydam, «Effect of Saharan Dust on Biodegradation of Phenol by White Rot Fungi.,» Environmental . Contam.Toxicol, cilt 75, pp. 466-473, 2005. [15] Yılmaz, Değişik Toprak Kökenli Doğal Besin Ortamlarının Spirulina Üretimine Etkilerinin Kesikli Reaktörler Kullanılarak İncelenmesi, H. Ü. Ç. M. B. Yüksek lisans tezi, 2006. [16] Ezzati, Atmosferik Taşınıma Giren Değişik Kaynaklı Toprakların Bitki Gelişimine Etkilerinin Araştırılması, Doktora Tez Hacetteoe Üniversitesi Fen Bilimleri Enstitüsü, Anakara, 2009. [17] Kubilay ve Kouvarakis, «Influence of Black Sea and local biogenic activity on the seasonal variation of aerosol sulfur species in the eastern Mediterranean atmosphere.,» Global Biogeochemi, 2002. [18] Kraemer, «Iron oxide dissolutionof siderophores,» cilt 66, p. 3–18, 2004. [19] Kapur, Saydam, Çavuşgil, Karaman, Atalay ve Özsoy, «Carbonate pools in soils of the Mediterranean: A case study from Anatolia Global Climate Change and Pedogenic Carbonates,» R. Lal, 1999. [20] Binnameh, Libya Toprak Örneklerinin Bazı Özeliklerinin Saptanması, H. Ü. Ç. M. B. Yüksek lisans tezi, 2006. [21] Gordon ve Martin, «Northeast Pasific iron distributions in relation to phytoplankton productivity,» Deep Sea Researh, cilt 25, pp. 177-196, 1988. [22] Edwards, Sedwick ve Morgan, «Iron in ice cores from Law Dome, East Antarctica: implications for past deposition of aerosol iron.,» Annals of Glaciology, cilt 27, p. 365–370, 1998. [23] Moore, Doney ve Michaels, «Nitrogen fixation amplifies the ocean biogeochemical response to decadal timescale variations in mineral dust deposition,» no. Nitrogen fixation amplifies the ocean biogeochemical response B, 58, p. 60–572, 2006. [24] Tsuda ve Takeda, «A mesoscale iron enrichment in the western Subractic Pasific inuces a largecentric diatom bloom,» Scicence, cilt 300, pp. 958-961, 2003. [25] Johnson, Chavez ve Buesseler, «Southern Ocean Iron Enrichment Experiment (SOFeX): carbon cycling in high- and low-Si waters,» Science, cilt 304, p. 408–414, 2004. [26] Chadwick, Derry ve Vitousek, «Changing sources of nutrients during four million years of ecosystem development,» cilt 397, no. 6719, pp. 491-497, 1999. [27] Okin, Mahowald, Chadwick ve Artaxo, «Impact of desert dust on the biogeochemistry of phosphorus in terrestrialecosystems,» Global Biogeochemical Cycles, no. Cycles 18 (2): Art. No. GB2005 APR 21, 2004. [28] Aytekin, Sözlü Görüşme, Hacettepe Üniversitesi Çevre Mühendisliği Bölümü. 06800, Beytepe - Ankara, 2005. [29] «Japan Aerospace Exploration Agency / Earth Observation Research Center http://sharaku.eorc.jaxa.jp/GSMaP/» [Çevrimiçi]. [30] Garcia, Feixue, Sedwick ve Hutchins, «Iron deficiency increases growth and nitrogen-fixation rates of phosphorus-deficient marine cyanobacteria» deficient marine cyanobacteria., cilt 9, pp. 238-245, 2015. [31] Guerzoni ve Elisabetta‏, «Shelf-life modelling for fresh-cut vegetables. Postharvest Biology and Technology,» Postharvest Biology and Technology, pp. 195-20, 1996. [32] Yang, Jie ve Jian, «Study on the analysis and distribution of dimethylsulfoxidein the Jiaozhou BayKey Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao», 2011. [33] Ceylan, Deniz ortamındaki alg patlamaları ile çöl kökenli tozlar arasındaki olası bağlantının küresel anlamda izlenmesi, Doktora Tezi Hacettepe Üniversitesi FenBilimleri Enstitüsü, Ankara, 2016. [34] Griffin, Kubilay, Koçak, Gray, Borden ve Shinn, «Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline,” Atmos. Environ.,» Atmos. Environ, cilt 41, no. 19, p. 4050–406, 2007. [35] Glavin ve Schubert, «Detecting pyrolysis products from bacteria on Mars,» Earth Planetry Sci.Lett, cilt 185, pp. 1-5, 2001. [36] Griffin, Kellog ve Christina, «Dust storms and their impact on ocean and human health: dust in Earth’s atmosphere,» EcoHealth, cilt 1.3, pp. 284-295, 2004. [37] Griffin ve Kellogg, «The global transport of dust,» Am.Sci, cilt 90, no. 3, pp. 228-235, 2002. [38] Griffin, «Atmospheric movement of microorganisms in clouds of desert dust and implications for human health,» Clin, Microbial.Rev, cilt 20, no. 3, pp. 459-477, 2007. [39] Griffin, «Terrestrial Microorganisms At An Altitude Of 20,000 M İn Earth’s Atmosphere, United States Geological Survey,Center for Costal and Watershed Studies, Petersburg, FL 33701, USA,» cilt 20, no. 175, pp. 135-140, 2004. [40] Nagata, Fukuda ve Kawaguchi, «D-amino acid contents of mitochondria and some purple bacteria,» cilt 12, pp. 109-113, 2001. [41] Whitman, Coleman ve Wiebe, «“Prokaryotes: the unseen majority,» Proc Natl Acad Sci U S A, cilt 95, no. 12, p. 6578–6583, 1998. [42] Doganay, «African dust-laden atmospheric conditions activate the trigeminovascular system,» Cephalalgia, cilt 29, no. 10, p. 1059–1068, 2009. [43] Aghlara, İç ve dış ortamlarda biyoaerosol seviyeleri ve kaynaklarının tespiti, Doktora Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2017. [44] SAYDAM, Havadan Tozdan, 2010. [45] Thao, Linh ve Hill, «Isolation and Selection of Microalgal Strains from Natural Water Sources in Viet Nam with Potential for Edible Oil Production,» Marine drugs, pp. 15(7), 194, 2017. [46] Santos, Moreira ve Kunigami, «Comparison between several methods of total lipid extraction from Chlorella vulgaris,» Raquel Rezende dos Santos Ultrason Sonochem, cilt 22, pp. 95-99, 2015. [47] Maity, Microalgae for third generation biofuel production,mitigation of greenhouse gasemissions and wastewater treatment, 2014. [48] Stanier, Kunisawa, Mandel ve Cohen, «Purification and properties of unicellular blue-green algae (Order Chroococcales),» cilt 35, pp. 171-205, 1971. [49] Andersen, «BBM -Medium, UTEX -The culture collection of algae at the University of Texas at Austin,» Elsevier Academic Press,London, cilt 578, pp. 1-106, 2005. [50] Halawlaw ve Yacoub, Comparison between several methods of total lipid extraction from Chlorella vulgaris biomass, 2014. [51] Madkour, Kamil ve Nasr, «Production and Nutritive Value of S. platensis platensis in Reduced Cost Media,» The Egyptian Journal of Aquatic Research, cilt 38, no. 1, pp. 51-57, 2012. [52] Cuellar, Parra ve Saldivar, «Deodorization of Arthrospira platensis biomass for further scale-up food applications J Sci Food Agric,» cilt 97, no. 1, pp. 5123-5130, 2017. [53] Elcik, Harun, Çakmakcı ve Mehmet, «Mikroalg üretimi ve mikroalglerden biyoyakıt eldesi,» Journal of the Faculty of Engineering and Architecture of Gazi University, cilt 32, no. 3, pp. 795-820, 2017. [54] Lupatini, Anne, Bispo ve Larissai, «Protein and carbohydrate extraction from S. platensis biomass by ultrasound and mechanical agitation.,» Food Research International, cilt 99, no. 3, pp. 1028-1035, 2017. [55] Posada, Brentner, Ramirez ve Patel, «Conceptual design of sustainable integratedmicroalgae biorefineries: parametricanalysis of energy use, greenhouse gas emissions and techno-economics,» .Algael research, cilt 17, pp. 113-130, 2016. [56] Richmond, Handbook of Microalgal Mass Culture, CRC Press, Boca Raton, 1986. [57] Shimamatsu ve Katoh, «Anti-tumor agent and method of treatment therewith,» U.S. Patent Pending, pp. 1150, 1982. [58] Zhang, Lin, Sun ve Deng, «Chemo- and radio-protective effects of polysaccharide of S. platensis platensis on hemopoietic system of mice and dogs,» Acta Pharmacologica Sinica, cilt 22, no. 12, pp. 1121-1124, 2001. [59] Mıshıma, Toyoshıma ve Fujii, «Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from blue-green alga, S. platensis patensis.Clinical and Experimental Metastasis,» Clinical and Experimental Metastasis, cilt 16, no. 60, pp. 541-500, 1998. [60] Efremenko, «Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresource technology,» Bioresource technology, cilt 114, pp. 342-348, 2012. [61] Mühling ve Belay, «Screening Arthrospira (S. platensis) Strains for Heterotrophy,» Journal of Applied Phycology, cilt 17, no. 2, pp. 129-135, 2005. [62] Belay ve Shimamatsu, «Current Knowledge on Potential Health Benefits of S. platensis,» Journal of applied Phycology, cilt 5, no. 2, pp. 235-241, 1993. [63] Yiğenoğlu ve Yudum, Spirolina platensis’in domateste bakteriyel solgunluk hastalığnın biyolojik mücadelesinde kulanım olanakları, Doktora Tezi. Çukurova Üniversitesi Fen bilimleri Enstitüsü, Adana, 2015. [64] Fadl ve Elsadany, «Contribution of microalgae-enriched fodder for the Nile tilapia to growth and resistance to infection with Aeromonas hydrophila,» Algal Research, cilt 27, pp. 82-88, 2017. [65] Gökhan ve H. Bayram, Bakır sülfat uygulanan gökkuşağı alabalığı (Oncorhynchus mykiss, Walbaum,1792)'nda bazı immun ve antioksidan parametrelere S. platensis'nın etkisinin arasteril ması, Doktora tezi..Fırat Üniversitesi . Fen Bilimleri Enstitüsü Elazığ, 2015. [66] Chang ve Chen, «Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresource technology,» Bioresource technology, cilt 145, pp. 307-312, 2013. [67] Jiang ve Han, «The feasibility of using complex wastewater from a monosodium glutamate factory to cultivate Spirulina subsalsa and accumulate biochemical composition,» Bioresour. Technol, cilt 180, p. 304–310, 2015. [68] Zhou, Weizhi, Yating, Gao, Yizhan, Zhao ve Haixia, «Nutrients removal and recovery from saline wastewater by Spirulina platensis School of Environmental Science and Engineering,» Shandong University, Jinan, Shandong 250100, China, 2017. [69] Lu, Qian, Liu ve Hui, «Pretreatment of brewery effluent to cultivate Spirulina sp. for nutrients removal and biomass production,» cilt 76, no. 7, pp. 1852-1866, 2017. [70] Yakhdansaz, Spirulina platensis İle Çeşitli Boyaların Renk Giderimlerinin Araştırılması, Spirulina platensis İle Çeşitli Boyaların Renk Giderimlerinin Araş Yüksek Lisans Tezi Hacettepe Üniversitesi Biyoloji Anabilim Dalı, Ankara, 2015. [71] Dauqan ve Sani, «Effect of different vegetable oils (red palm olein, palm lein, corn oil and coconut oil) on lipid profile in rat,» Food Nut. Sci, cilt 2, p. 253–258, 2011. [72] Guoz ve Tong, «The interactions between Chlorella vulgaris and algal symbiotic bacteria under photoautotrophic and photoheterotrophic conditions,» J Appl Phycol, cilt 26, p. 1483._1152, 2014. [73] Beijerinck, «Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen, Botanische Zeitung,» cilt 47, pp. 725-739, 741-754, 757-768, 781-785, 1990. [74] Vecina, Oliveira ve Araujo, «Chlorella modulates insulin signaling pathway and prevents high-fat diet-induced insulin resistance in mice,» cilt 95, no. 1, pp. 45-52, 2014. [75] MA, Alam, Wan ve Chang, «Enhanced removal of Zn(2+) or Cd(2+) by the flocculating Chlorella vulgaris,» cilt 289, pp. 38-45, 2015. [76] Queiroz, Souza, Blasco, Marín ve Gagliano, «Chlorella vulgaris reduces the impact of stress on hypothalamic-pituitary-adrenal axis and brain c-fos expression,» cilt 65, pp. 1-8, 2016. [77] Vecina, Oliveira ve Araujo, «Chlorella modulates insulin signaling pathway and prevents high-fat diet-induced insulin resistance in mice,» Life Sci, cilt 95, no. 1, pp. 45-52, 2014. [78] Deng, Paerl ve Zhang, «Effects of nutrients, temperature and their interactions on Spring phytoplankton community succession in Lake Taihu,» China. PLoS ONE, cilt 9, 2014. [79] SonD.T, «Initial Observation about Lipids and Nutrients of Some Microalgal Strains Originated in Viet Nam,» Sci. Technol. Inf. (STNFO), cilt 11, p. 29–31, 2014. [80] Sydney ve Sturm, «Potential carbon dioxidefixation by industrially important microalgae,» Bioresour. Technol, cilt 101, p. 5892–5896, 2010. [81] Um ve Kim, «A chance for Korea to advance algal-biodiesel technology,» Biodiesel Technology. J. Ind. Eng. Chem, cilt 15, p. 1–7, 2009. [82] llman, Scragg ve Shales, «Increase in Chlorella strains calorific values when grown in low nitrogen medium,» Bioresour Technol, cilt 99, pp. 4717-4722, 2007. [83] Spolaore, Joannis-Cassan, Duran ve Isamber, «Microalgae for biodiesel production and other applications: A review. Renew.,» Commercial applications of microalgae. J. Biosci. Bioeng., cilt 101, p. 87–96, 2006. [84] SARAYLOO ve EHSAN, Application of random mutagenesis to enhance lipid productivity in Chlorella vulgaris, Doktora Tezi.Koç Üniversitesi Fen Bilimleri Enstitüsü , 2016. [85] Ergün ve Daşgan, «Su kültüründe yetisteril en kıvırcık marul bitkisinde mikroalg (Chlorella vulgaris) uygulamasının etkileri,» %1 içinde 9. Ulusal Sebze Tarımı Sempozyumu, 2012. [86] Bayram, Adıyaman koşullarında bazı bitki aktivatörlerinin Galia C8 ve Kırkağaç 637 kavun çeşitlerinde verim, kalite, bitki büyümesi ve beslenme durumuna etkileri., Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, 2014. [87] Alhamdi, Spirulina platensis ve Chlorella vulgaris ile boyar madde giderimi, Yüksek lisans tez.Gazi Üniversitesi .Fen Bilimleri Enstitüsü Ankara, 2017. [88] Tuğcu ve Gülçin, Assessment and in silico modelling of the toxicity of selected emerging pollutants to Chlorella vulgaris, Doktora tezi. Boğaziçi Üniversitesi, Çevre Bilimleri Fen Bilimleri Enstitüsü.İstanbul, 2017. [89] Welter ve Schwenk, «Minimal medium for optimal growth and lipid production of the microalgae Scenedesmus dimorphus,» Environmental Progress & Sustainable Energy, cilt 32, no. 4, pp. 937-945, 2013. [90] Zhao, Sun, Hu ve Zhang, «Performance of three microalgal strains in biogas slurry purification and biogas upgrade in response to various mixed light-emitting diode light wavelengths,» Bioresource Technology, pp. 338-345, 2015. [91] Dhanpal, «Studies on Extraction and Physico-chemical analysis of novel algae Scenedesmus sp YACCYB70 oil. RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES,» cilt 8, no. 4, pp. 300-304, 2017. [92] Anh, Nhi, Hoa ve Van, «Effect of different drying methods on total lipid and fatty acid profiles of dried Artemia franciscana biomass,» Can Tho University Journal of Science, Cilt %1 / %21, 1–9, 2015. [93] Şentürk ve Tuğba, Bazı ağır metal ve nutrientler üzerinde Chlorella vulgaris ve Scenedesmus sp (Chlorophyta)'nin adsorban etkisinin araştırılması, Doktora tez Celal Bayar Üniversitesi .Fen Bilimleri Enstitüsü, Manisa, 2017. [94] Ağırman, Chlorella vulgaris ve Scenedesmus acutus'un gelişimi, pigment oluşumu, lipit ve protein içeriği üzerine farklı stres faktörlerinin etkileri:, Doktora tez: Fırat Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı Elazığ, 2015. [95] Kara, Farklı Besin Ortamlarının (Chlorella vulgaris, Scenedesmus acutus, Saccharomyces cerevisiae) CHIRONOMIDAE TÜRLERĠNĠN (Chironomus plumosus (L., 1758), Chironomus anthracinus Zett., 1860 ve Halocladius (H.) fucicola Gelişme Süreci ve Biokimyasal Özellikleri, Fırat Üniversitesi Fen Bilimleri Enstitüsü.Elgaz, 2012. [96] Garnier ve Gascuel, «Assessing the impact of agricultural pressures on N and P loads and eutrophication risk,» cilt 48, pp. Pages 396-40, 2015. [97] Gölerin ve H. Cüce, Trofik seviyelerinin değişiminde sedamdan tabakasının rolü ve su kalitesinin izlenmesi ve değerlendirilmesinde coğrafi bilgi sistemlerinin uygulaması, Ondokuz Mayıs Üniversitesi OMÜ Fen Bilimleri Enstitüsü Çevre, 2016. [98] Cabrerizo, Carrillo, Villafañe and Helbling, "Current and predicted global change impacts of UVR, temperature and nutrient inputs on photosynthesis and respiration of key marine phytoplankton groups," Journal of Experimental Marine Biology and Ecology, vol. 461, pp. 371-380, 2014. [99] Revilla ve Garmendia, «Phytoplankton composition indicators for the assessment of eutrophication in marine waters: Present state and challenges within the European directives,» Marine Polution Bulletin, cilt Phytoplankton composition indicators for the assessment of eutrophication in marine waters: Present sta66, no. 2, pp. 7-16, 2013. [100] Hickey ve Gibbs, «.Lake sediment phosphorus release management Decision support and risk assessment framework,» New Zaland Journal of Marine and Freshwater Research, cilt 43, p. 819–856, 2009. [101] Flynn ve Suplee, «Draft Using a Computer Water Quality Model to Derive Numeric Nurtrient Criteria.Lower Yellowstone River,» Montana Departmet of Environmental Quality, p. 274, 2011. [102] Fang ve Yang, «Water eutrophication in Li-Yang Reservoir and its ecological remediation countermeasures,» Journal of Soil and Water Conservation, cilt 18, no. 6, pp. 183-186, 2004. [103] Ogawa ve Mostofa, «Factors Mechanisms and possible solutions to pollutants in marine ecosystems, Environmental Pollution, 182: 461-478, 2013.,» Environmental Pollution, cilt 182, pp. 461-478, 2013. [104] Yetik, Atık Suların Yapaysulak Alanlarda Arıtımının Dencelenmesi, Yüksek Lisans Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü,Sakarya, 2008. [105] Yılmaz, Atıksularından Su Mercimeği (Lemna Minor L) Nütrient Giderimi, Yüksek Lisans Tezi, Selçuk Üniversitesi .Konya, 2004. [106] Iram, Ahmad, Riaz ve Zahra, «Treatment of wastewater by lemna minor,» Pakistan Journal of Botany, cilt 44, no. 2, p. 553–557, 2012. [107] Topal ve Karagözoğlu, «Bazı Su Mercimeklerinin.Nütrient Gideriminde Kullanımı,» Mehmet Akif Ersoy Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, Cilt %1 / %22,4, pp. 1-5, 2011. [108] Üçüncü, Su mercimeği kullanarak farklı konsantrasyonlardaki ağır metal karışımlarının laboratuvar ortamında biyoremediasyonu, A.Ü. Fen Bilimleri Ens. Yüksek Lisans Tezi. Ankara, 2011. [109] Balcıgil, Nutrient and heavy metal removal from domestic wastewater by using duckweed, M.Ü Fen Bilimleri Enst. Yüksek Lisans Tezi, İstanbul, 2013. [110] Zhang ve Chen, «The logistic growth of duckweed(Lemna minor) and kinetics of ammonium uptake,» Environmental Technology, cilt 35, no. 5–8, p. 562–567, 2014. [111] Axtell ve Sternberg, «Lead and nickel removal using Microspora and Lemna minor,» Bioresource technology, cilt 98, no. 1, pp. 41-48, 2003. [112] Yılmaz ve Akbulut, «Effect of circulation on wastewater treatment by Lemna gibba and Lemna minor (floating aquatic macrophytes). International journal of phytoremediation, 13(10), 970-984.,» International journal of phytoremediation, cilt 13, no. 10, pp. 970-984, 2011. [113] Sekomo, Rousseau ve Saleh, «Heavy metalremoval in duckweed and algae ponds as a polishing step for textile wastewater treatment,» Ecological Engineering, cilt 44, pp. 102-110, 2012. [114] Tatar ve Öbek, «Potential of Lemna gibba L. and Lemna minor L. for accumulation of Boron from secondary effluents,» Ecological Engineering , cilt 70, p. 332–336, 2014. [115] Şaşmaz, Lemna gibba L. ve Lemna minor L.’ ün galeri suyundaki bazı ağır metalleri alım kapasitelerinin karşılasterilması, F.Ü. Fen Bilimleri Enst. Yüksek Lisans Tezi. 49 s. Elazığ, 2014. [116] Bulletin ve Extension, «Malting Barley Production in Michigan Authors,» Ashley McFarland, Director, Upper Peninsula Research and Extension Center – Michigan State University, 2014. [117] Hamilton, Doll ve Robertson, The Ecology of Agricultural Landscapes: Long-Term Research on the Path to Sustainability, Oxford University Press, New York, 2015. [118] Agegnehu, Nelson ve Bird, «Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on Nitisols,» Soil Tillage Res, cilt 160, p. 1–13, 2016. [119] Brewers-Association, Malting Barley Characteristics for Craft Brewers, Brewers Association, 2016. [120] PEDDIE ve H. AB‏, «Ester formation in brewery fermentations‏,» Journal of the Institute of Brewing‏, cilt 96‏, pp. 327-331, 1990. [121] Güler ve Safure, Türkiye'nin Kışlık Dilimine Uygun Maltlık Arpa Çeşit ve Çevrelerinin Belirlenmesi, Ankara Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Doktora Tezi, 2012. [122] Tongarlak ve Şengül, Farklı buğday ve arpa varyetelerinin kadmiyuma tepkilerinin belirlenmesi, Doktora Tezi ,Selçuk Üniversitesi ,Fen Bilimleri Enstitüsü , Konya, 2010. [123] GARCIA ve L. ‏, Clinical microbiology procedures handbook‏, American Society for Microbiology Press, 2010. [124] Agaoğlu ve Çelik, Genel Bahçe Bitkileri, Ankara Üniversitesi, Ziraat Fakültesi, Eğitim, Araştırma ve Geliştirme Vakfı Yayınları, No: 4, 369, 1995. [125] Chandra ve Mani, «A study of 2 rapid tests to differentiate Gram positive and Gram negative aerobic bacteria. Journal Medicine Allied Science,» Journal Medicine Allied Science, cilt 1.2, pp. 84-85, 2011. [126] Hellebustb, Johan, Janet ve Craigie, Handbook of phycological methods: physiological and biochemical methods, Cambridge University Press, 1978. [127] Ineshkumar, Narendran ve Sampathkumar, Cultivation of Spirulina platensis in different selective media, 2016. [128] ‏Anonim, Organısatıon For Economıc Co-Operatıon And Development, Guidelines for the testing of chemicals Lemna sp. Growth inhibition test, 2002. [129] WILLIAMS ve Diane, WATER QUALITY STATUS AND TRENDS IN THE CLARK FORK-PEND OREILLE WATERSHED, 2009. [130] Cleuvers ve Ratte‏, Phytotoxicity of coloured substances: is Lemna Duckweed an alternative to the algal growth inhibition test?‏, 49.1;9-15, 2002. [131] Ellıs, «Photothermal Time for Flowering in Faba Bean (Vicia faba) and the Analysis of Potential Vernalization Responses,» Ann. Bot., January 61: 73 - 82., cilt 61, pp. 73 - 82, 1988. [132] Lichtenthaler ve Rinderle, «Chlorophyll fluorescence signatures as vitality indicator in forest decline research. In: Applications of Chlorophyll Fluorescene in Photosynthesis Research, Stress Physiology, Hydrobiology and Remote Sensing.,» Springer, Dordrecht, pp. 143-149, 1988. [133] Güllü, Sözlü görüşme, Hacettepe Üniversitesi, Çevre Mühendisliği Bölümü, Beytepe 06800, Ankara, 2008. [134] Kelman, «The triggers or precipitants of the acute migraine attack,” Cephalalgia,,» cilt 27, no. 5, pp. 394-402, 2007. [135] Habibazarfard, İç Ortam Hava Kalitesinin Poyrazmatik İle İyileştirilm, Yüksek Lisans Tez, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2017. [136] Mijic ve Tasic, «Atmospheric Aerosols and Their Influence on Air Quality in Urban Areas,» Fact Univ. Ser.Physics, Chem.Technol, cilt 4, no. 1, pp. 83-91, 2006. [137] Naves, «Measurement of biofilm formation by clinical isolates of Escherichia coli is method‐dependent. Journal of applied microbiology,» Journal of applied microbiology, cilt 105, no. 2, pp. 585-590, 2008. [138] Rousk ve Baath, «Fungal and bacterial growth in soil with plant materials of different C/N ratios,» FEMS Microbiology Ecology, cilt 62, no. 3, pp. 258-267, 2007. [139] FERNÁNDEZ, SOTIROPOULOS ve BROWN, Foliar fertilization: scientific principles and field practices, Paris; France: International Fertilizer Industry Association, 2013. [140] DECOTEAU ve Dennis, « Environmental Factors and Technology in Growing Plants,» Principles of plant science, pp. 49-66, 2005. [141] NEMATZADEH ve e. al, « Evaluating Effect of Di-potassium Hydrogen Phosphate (K2Hpo4) on Accumulation of Some Secondary Metabolites in Spirulina cyst,» Journal of Ecosystem & Ecography, cilt 5; 1, 2015. [142] [Çevrimiçi]. Available: http://www.havaizleme.gov.tr. [143] Garcia, Feixue, Sedwick ve Hutchins, «Iron deficiency increases growth and nitrogen-fixation rates of phosphorus-deficient marine cyanobacteria.,» no. 9(1), p. 238–245, 2015. [144] Thao, T. Yen, Linh ve Taylor, «Carter 2 and Russell T. Hill 2,Isolation and Selection of Microalgal Strains from NaturalWater Sources in Viet Nam with Potential for Edible Oil Production Mar,» pp. 157-194, 2017. [145] L. O. B. Anne Luize Lupatini, «Protein and carbohydrate extraction from S. platensis biomass by ultrasound and mechanical agitation.,» Food Research International, cilt 99, no. 3, pp. 1028-1035, 2017.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/5191
dc.description.abstractTHE PRODUCTION OF FERTİLİZER FROM AIR Adeleh RASHIDI Doctor of Philosophy, Department of Environmental Engineering Supervisor: Prof. Dr. A. Cemal Saydam August 2018, 153 pages This thesis study is designed to test whether the natural events can be simulated following the accumulation of sufficient knowledge about the natural cycles. During the course of the process of desert dust transportation desert dust can mix with cloud water and the resulting dust cloud and solar light intensity triggers the proliferation of bacteria and fungus due to enrichment of nutrients within the cloud droplet. This process not only supply necessary nourishments but also results with all sorts of essential amino acids within the cloud droplet. Following the wet precipitation, the receiving body responds positively but the science community still does not aware of this affect and seeks solutions at somewhere else. On the other hand, this work has been designed as to test the impact of the in cloud generated ingredients on various receiving bodies. The studies performed has shown that so called ideal growth solutions does not necessarily achieves ideal growth since experiments performed by 10g/l Saharan desert dust solutions resulted with better growth. The development of algae in an ideal growth solution has been achieved both in quantity and in shorter time. For Arthrospira platensis 46% more chlorophyll levels has been reached in 5 days as opposed to 7 days with ideal growth solutions. The experiments repeated with enhanced sulfate levels basing on the fact that desert dust solar light interactions enhances sulfate concentrations within rain droplet. It has been shown that with this approach Arthrospira platensis concentrations has been increased by an additional 56% within 4 days. Similar growth parameters have also been observed for Chlorella vulgaris and Scendenesmus species. The experiments carried out by using Lemna minör, typical occupants of still waters responded positively to Saharan dust by delaying the decay of leaves by 3 days as opposed to the ones grown in normal pond water. The rate of leaf decay is 1.2 for Saharan solution as opposed to 2.2 for the one grown in pond water. The results show that chlorophyll cells last longer converts more solar light energy thus sequester more carbon. Experiments carried out by Aydan Hanım genotype barley resulted with the increase of nitrogen content from literature value of 1.2% to 2,3% with 10g/l Saharan solution, a mere 100% increase. Another iconoclastic result was to show the fact that eutrophication that is believed and assumed to be due to phosphate effluents from household waste waters is in fact due to sulfates. In conclusion it has been shown experimentally that desert dust cloud interactions and the ingredients formed within the cloud waters has got a positive impact on the receiving bodies. This is a unique study that experimentally shows that it’s possible to make fertilizer from air and with such system it’s possible to store more energy due to increase in chlorophyll activities. Keywords: Dust, cloud, algae, Lemna minor, barley, chlorophylltr_TR
dc.description.tableofcontentsİÇİNİNDEKİLER Sayfa ÖZET i ABSTRACT iii TEŞEKKÜR v İÇİNİNDEKİLER vi TABLOLAR LİSTESİ viii ŞEKİLLER LİSTESİ xii SİMGELER VE KISITLAMALAR xix 1. GİRİŞ 1 1.1. Çöl Tozlarının Besin Değerinin Gösteren Çalışmalar 8 1.2. Sahra Tozları Atmosferdeki Sülfatın Kaynağı Olduğunu Gösteren Çalışmalar 9 1.3. Sahra Tozlarında Bulunan Demir Kaynağı ve Alg Patlama Olayı 10 1.4. Atmosferde Sahra Tozlu Günlerde Bakteri ve Mantarın Yük Değişimleri 14 1.5. Tezin Amacı 17 1.6. Algler 19 1.6.1. Arthrospira platensis 21 1.6.2. Chlorella vulgaris 24 1.6.3. Scenedesmus Sp 26 1.7. Ötrofikasyon 27 1.8. Lemna minor (Su Mercimeği) 28 1.9. Aydan Hanım, Arpa 29 2.Yöntem ve Plan 31 2.1. Sahra Çözeltisinde Mikroorganizmaların Çoğalma Evreleri 32 2.2. Bakterilerin Çoğalma Fazları ve Evreleri 34 2.3. Güneş ışığının etkisinin incelenmesi 35 2.4. Sahra Çözeltisinde Gram Boyama Testi 35 2.5. Sahra Çözeltisinin En Uygun Konsantrasyonu 36 3.MATERYAL VE METOT 37 3.1. Yosun, Su mercimeği, Arpa Materyali 37 3.2. Besin Çözeltilerinin Hazırlanması 37 3.3. Besin çözeltilerinin içeriği 38 3.4. Sahra Çözeltisinin İçeriği 40 3.5. Deneysel Materyallerin Hazırlanması 41 3.5.1. Alg ekime hazırlanması. 41 3.5.2. Lemna minor (Su Mercimeği) 43 3.5.3. Arpa Tohumlarının Sterilizasyonu ve Ekime Hazırlanması 44 3.5.4. Atmosferde Sahra Tozlu ve Tozsuz Günlerde Bakteri ve Mantarı Deneyleri 47 3.6. İstatistiksel Analiz Yöntemleri 47 4.SONUÇLAR VE TARTIŞMA 49 4.1. Sahra tozlu hava numunelerin Gram boyama test sonuçları 55 4.2. Sahra çözeltisinde bakterilerin çoğalma eğrileri ve sonucu 56 4.3. Sahra çözeltileri (10g/l) İyon Kromatografi ve ICP/MS Elementel Analysis sonuçları 58 4.4. Alglerin Deney Sonuçları. 63 4.4.1. Arthrospira platensis 63 4.4.2. Chlorella vulgaris 67 4.4.3. Scenedesmus sp 70 4.5. İdeal ve Sahra çözeltisinde alg gelişimlerinin karşılaştırılması 73 4.6. Alg gelişimine sülfat ve fosfatın etkisi 76 4.6.1. Sülfat ve fosfatın Arthrospira platensis üzerindeki etkileri 76 4.6.2. Fosfatın Arthrospira platensis’de üzerindeki etkileri 81 4.6.3. Sülfatın ve fosfatın Chlorella vulgaris üzerindeki etkileri 86 4.6.4. Fosfatın Chlorella vulgaris üzerine etkisi 91 4.6.5. Sülfat ve fosfatın Scenedesmus sp’de klorofil a miktarlarındaki değişime etkileri 97 4.6.6. Fosfatın BBM ve Sahra çözeltisinde gelişen Scenedesmus sp’de etkisi 101 4.6.7. Scendenesmus sp algin değişik katkılara davranışları hakkında genel değerlendirme 107 4.7. Alg deneyleri sonuçları 108 4.8. Lemna minör Deney Sonuçları 110 4.9. Aydan Hanım Sertifikalı Arpa deneyleri. 115 4.9.1. Arpada Pigment Miktarlarındaki Değişim 116 4.9.2. Klorofil a 116 4.9.3. Klorofil a b içeriği 118 4.9.4. Klorofil (a+b) içeriği 119 4.9.5. Karotenoid sonuçları 120 4.9.6. Karbon miktarlarındaki değişim 122 4.9.7. Azot miktarlarındaki değişim analizi 123 4.9.8. Karbon/Azot oranı (C/N) 125 4.9.9. Arpada Sülfür değişimi 127 4.10. TARTIŞMA 129 5.SON DEĞERLENDİRME VE ÖNERİLER 132 Kaynaklar 135 Tablolar Listesi Sayfa Tablo 1.1. Bitkiler için gerekli besin maddeleri ve özelliklerine göre sınıflandırılması [8], [11] 7 Tablo 1.2. Sahra Toprağında Bulunan Bakteri Ve Mantar Türleri [42] 15 Tablo 2.1. Sahra Çözeltisindeki Amino Asitler [7] 33 Tablo 3.1. BG11 (Blue-Green Medium) İçeriği [127]. 38 Tablo 3.2. BBM (Bold Basal Medium) İçeriği [127] 39 Tablo 3.3. Hewitt Besin Çözeltisi İçeriği [1] 40 Tablo 3.4. MATERYAL VE METOT ÖZETİ 48 Tablo 4.1. Sahra Toprağında ve Güneşte beklenen Sahra çözeltisi (10 g/l distile steril su) ICP-MS sonuçları 59 Tablo 4.2. Aydınlık ve karanlık ortamlarda bekletilen Sahra çözeltisinde ICP-MS/ İyon kromatografi sonuçları 60 Tablo 4.3. Arthrospira platensis’de maksimum klorofil a ve zaman arasında ANOVA ve Multiple Range Testlerin Sonuçları 66 Tablo 4.4. Arthrospira platensis’de maksimum klorofil a ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 66 Tablo 4.5. Chlorella vulgaris’de maksimum klorofil a ve zaman arasında ANOVA ve Multiple Range Testlerin Sonuçları 70 Tablo 4.6.Chlorella vulgaris’de maksimum klorofil a ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 70 Tablo 4.7. Scenedesmus sp’de maksimum klorofil a ve zaman arasında ANOVA ve Multiple Range Testlerin Sonuçları OVA Testinin Sonuçları 73 Tablo 4.8. Scenedesmus sp’de maksimum klorofil a ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 73 Tablo 4.9. Arthrospira platensis’de BG1 ortamına Na₂SO₄ ilave edilen halde maksimum klorofil a ve zaman arasında ANOVA ve Multiple Range Testlerin Sonuçları 78 Tablo 4.10. Arthrospira platensis’de BG11 ortamına Na₂SO₄ ilave edilen halde maksimum klorofil a ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 78 Tablo 4.11. Arthrospira platensisde Sahra çözeltisine Na₂SO₄ ilave edilen halde maksimum klorofil a ve zaman arasında ANOVA ve Multiple Range Testlerin Sonuçları 80 Tablo 4.12. Arthrospira platensisde Sahra çözeltisine Na₂SO₄ ilave edilen halde maksimum klorofil a ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 80 Tablo 4.13 Arthrospira platensis’de BG11 ortamına K₂HPO₄ ilave edilen halde maksimum klorofil a ve zaman arasında ANOVA ve Multiple Range Testlerin Sonuçları 82 Tablo 4.14. Arthrospira platensisde BG11 ortamına K₂HPO₄ ilave edilen halde maksimum klorofil a ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 83 Tablo 4.15 Arthrospira platensisde Sahra çözeltisine K₂HPO₄ ilave edilen halde maksimum klorofil a ve zaman arasında ANOVA ve Multiple Range Testlerin Sonuçları 84 Tablo 4.16 Arthrospira platensisde Sahra çözeltisine K₂HPO₄ ilave edilen halde maksimum klorofil a ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 85 Tablo 4.17. Arthrospira platensis’in gelişiminde kullanılan değişik besin yerlerinde ölçülen ortalama ve maksimum klorofil a seviyeleri ve bu seviyeye kaçıncı günde ulaşıldığını gösteren tablo 86 Tablo 4.18. Chlorella vulgaris’de BBM ortamına Na₂SO₄ ilave edilen halde maksimum klorofil a ve zaman arasında ANOVA ve Multiple Range Testlerin Sonuçları 88 Tablo 4.19. Chlorella vulgaris’de BBM ortamına Na₂SO₄ ilave edilen halde maksimum klorofil a ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 88 Tablo 4.20. Chlorella vulgaris’de Sahra çözeltisinde Na₂SO₄ ilave edilen halde maksimum klorofil a ve zaman arasında ANOVA ve Multiple Range Testlerin Sonuçları 90 Tablo 4.21. Chlorella vulgaris’de Sahra çözeltisinde Na₂SO₄ ilave edilen halde maksimum klorofil a ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 90 Tablo 4.22. Chlorella vulgaris’de BBM ortamına K₂HPO₄ ilave edilen halde maksimum klorofil a ve zaman arasında ANOVA ve Multiple Range Testlerin Sonuçları 92 Tablo 4.23. Chlorella vulgaris’de BBM ortamına K₂HPO₄ ilave edilen halde maksimum klorofil a ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 93 Tablo 4.24. Chlorella vulgaris’de Sahra çözeltisinde K₂HPO₄ ilave edilen halde maksimum klorofil a ve zaman arasında ANOVA ve Multiple Range Testlerin Sonuçları 95 Tablo 4.25. Chlorella vulgaris’de Sahra çözeltisinde K₂HPO₄ ilave edilen halde maksimum klorofil a ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 95 Tablo 4.26. Chlorella vulgaris’de gelişiminde kullanılan değişik besin yerlerinde ölçülen ortalama ve maksimum klorofil a seviyeleri ve bu seviyeye kaçıncı günde ulaşıldığını gösteren tablo 96 Tablo 4.27. Scendenesmus sp’de BBM ortamına Na₂SO₄ ilave edilen halde maksimum klorofil a ve zaman arasında ANOVA ve Multiple Range Testlerin Sonuçları 98 Tablo 4.28. Scendenesmus sp’de BBM ortamına Na₂SO₄ ilave edilen halde maksimum klorofil a ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 99 Tablo 4.29. Scendenesmus sp’de Sahra çözeltine Na₂SO₄ ilave edilen halde maksimum klorofil a ve zaman arasında ANOVA ve Multiple Range Testlerin Sonuçları 100 Tablo 4.30. Scendenesmus sp’de Sahra çözeltine Na₂SO₄ ilave edilen halde maksimum klorofil a ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 101 Tablo 4.31. Scenedesmus sp BBM ortamına K₂HPO₄ ilave edilen halde maksimum klorofil a ve zaman arasında ANOVA ve Multiple Range Testlerin Sonuçları 103 Tablo 4.32 Scenedesmus sp’de BBM ortamına K₂HPO₄ ilave edilen halde maksimum klorofil a ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 103 Tablo 4.33. Scendenesmus sp’de Sahra çözeltisinde K₂HPO₄ ilave edilen halde maksimum klorofil a ve zaman arasında ANOVA ve Multiple Range Testlerin Sonuçları 106 Tablo 4.34. Scendenesmus sp’de Sahra çözeltisinde K₂HPO₄ ilave edilen halde maksimum klorofil a ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 106 Tablo 4.35. Scendenesmus sp’de gelişiminde kullanılan değişik besin yerlerinde ölçülen ortalama ve maksimum klorofil a seviyeleri ve bu seviyeye kaçıncı günde ulaşıldığını gösteren tablo 107 Tablo 4.36. Arpada maksimum klorofil a ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 117 Tablo 4.37. Arpada maksimum klorofil b ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 118 Tablo 4.38. Arpada maksimum klorofil (a+b) ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 120 Tablo 4.39. Arpada maksimum Karotenoid ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 121 Tablo 4.40. Arpada maksimum Karbon Oranı (%), ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 122 Tablo 4.41. Arpada maksimum Azot Oranı (%), ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 124 Tablo 4.42. Arpada maksimum C/N Oranı (%), ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 126 Tablo 4.43. Arpada maksimum Sülfür Oranı (%), ve ortamlar arasında ANOVA ve Multiple Range Testlerin Sonuçları 128 ŞEKİLLER Sayfa Şekil 1.1. Sucul Ortamda Karbonat Bikarbonat pH Eğrisi [6] 5 Şekil 1.2. MODIS uydu verisine göre 22 Mayıs 2016 günü Cezayir ve Tunus önlerinde toz bulut etkileşimini gösteren uydu görüntüsü 11 Şekil 1.3. JAXA sitesinden alınan bu yağmur verisine göre saat 14:00-14:59 arası toz bulut etkileşimi olan yerde kaydedilen yağışın dağılımı ve şiddeti 12 Şekil 1.4. Cezayir Tunus önlerinde kaydedilen Emiliania huxleyi Alg Görüntüsü 13 Şekil 1.5. Cezayir önlerinde alg konsantrasyon dağılımı [29] 13 Şekil 1.6. Sahra tozlu atmosferden alınan hava numunelerinde membran üzerinde bakteri ve mantar kolonileri oluşumu 15 Şekil 1.7. Güney-doğu Cezayir'de Tassili n'Ajjer [44]. 16 Şekil 1.8. Tassili n'Ajjer Sahra Çölü'nün Cezayir bölümünde yer alan mağaralardaki gravürler görüntüsü. [44]. 17 Şekil 2.1. İyon Kromatografi Cihazın Görünümü 32 Şekil 2.2. Bulanıklık ölçümü için bölümümüzde kullanılan UV spektrofotometre (Jen Wat 6105 UV/Vis. Model) cihazından görünüm 35 Şekil 3.1. Sahra Çözeltisinin Görünüşü 40 Şekil 3.2. İklim Dolabında Büyütülen Algler ve Bitkilerin Görünüşü 41 Şekil 3.3. Ankara Üniversitesi Biyoloji Bölümü Sera Havuzundan Lemna minor Görüntüsü 43 Şekil 3.4. Lemna minor Laboratuvarda Deney Örneklerinin Görüntüsü 43 Şekil 3.5. Aydan Hanım, Sertifikalı Arpa Tohumu 45 Şekil 3.6. Bitkilerin Günlük Sulanması 46 Şekil 3.7. Havanın bakteriyolojik örneklemesi amacı ile kullanılan vakum pompası ve impaktör görünümü 47 Şekil 4.1. 8 Kasım 2016 tarihli Modis Terra uydu verisi ve üzerinde 72 saatlik hava geri izleme sonuçları. (Yeşil yerden 3000 metre, mavi 1500 metre, kırmızı ise 500 metre yüksekliği göstermektedir). 49 Şekil 4.2. 9 Kasım 2016 tarihli Modis Terra uydu verisi ve üzerinde 72 saatlik hava geri izleme sonuçları. (Yeşil yerden 3000 metre, mavi 1500 metre, kırmızı ise 500 metre yüksekliği göstermektedir). 50 Şekil 4.3. (08/11 /2016) ve (09/11/2016) tarihlerinde Ankara atmosferine Sahra çölünden gelen hava örnekleri içerisinde gelişen bakteri ve mantar kolonileri 50 Şekil 4.4. 16 Kasım 2016 tarihli Modis Terra uydu verisi ve üzerinde 72 saatlik hava geri izleme sonuçları. (Yeşil yerden 3000 metre, mavi 1500 metre, kırmızı ise 500 metre yüksekliği göstermektedir) 51 Şekil 4.5. 16 Kasım 2016 tarihli uydu verilerine yerdeki vejetasyonun ilave edilmiş izleme sonuçları 52 Şekil 4.6. (16 /11/ 2016) tarihlerinde Ankara atmosferine kuzey yönünden gelen günde hava örneklemesi 53 Şekil 4.7. Sahra Çözeltisinin Yakından Görünüşü 55 Şekil 4.8. Sahra çözeltilerinde (5 g/l) ve Sahra çözeltilerinde (5 g/l)+ (0.2 ml/L) Wolfe solüsyon eklenmiş halde üreme eğrisi 57 Şekil 4.9. Sahra çözeltilerinde (10 g/l) ve Sahra çözeltilerinde(10g/l)+ (0.2 ml/L) Wolfe solüsyon eklenmiş halde üreme eğrisi 57 Şekil 4.10. Sahra çözeltilerinde(15 g/l) ve Sahra çözeltilerinde(15g/l)+ (0.2 ml/L) Wolfe solüsyon eklenmiş halde üreme eğrisi 57 Şekil 4.11. Sahra çözeltilerinde(20 g/l) ve Sahra çözeltilerinde(20g/l)+ (0.2 ml/L) Wolfe solüsyon eklenmiş halde üreme eğrisi 58 Şekil 4.12. Güneşte ve karanlıkta Sahra çözeltisi (10 g/l distile steril su) içeriği iyon kromatografi ve ICP-MS sonuçları 62 Şekil 4.13. Değişik besin ortamlarında Arthrospira platensis ’de klorofil a değişimi 63 Şekil 4.14. Değişik çözeltilerle büyütülen Arthrospira platensis görünümü 64 Şekil 4.15. Arthrospira platensis ‘in değişik besin ortamlarında mikroskobik görüntüsü 65 Şekil 4.16. Değişik besin ortamlarında Chlorella vulgaris’de klorofil a değişimi 67 Şekil 4.17. Değişik çözeltilerle büyütülen Chlorella vulgaris görünümü 68 Şekil 4.18. Chlorella vulgaris’de değişik besin ortamlarında mikroskobik görüntüsü 69 Şekil 4.19. Değişik besin ortamlarında Scenedesmus sp ’de klorofil a değişimi 71 Şekil 4.20. Değişik çözeltilerle büyütülen Scenedesmus sp görünümü 71 Şekil 4.21. Scenedesmus sp değişik besin ortamlarında mikroskobik görünümü 72 Şekil 4.22. Arthrospira platensis’in Sahra çözeltisi ile ideal besi yerinde 9 günlük ortalama klorofil a değişimi 74 Şekil 4.23. Chlorella vulgaris’in Sahra çözeltisi ile ideal besi yerinde 12 günlük ortalama klorofil a değişimi 74 Şekil 4.24. Scenedesmus sp’ in Sahra çözeltisi ve ideal besi yerinde 12 günlük ortalama klorofil a değişimi 75 Şekil 4.25. BG11 ortamında değişik Sülfat artışında Arthrospira platensis’de ki ortalama klorofil a değişimi (µg/l) 77 Şekil 4.29. BG11 ortamında ve BG11 ortamına 300 (mg/l) Na₂SO₄ ilave edilen halde Arthrospira platensis’de ortalama klorofil a değişimi (µg/l) 77 Şekil 4.27. Sahra çözeltisine ilave edilen sülfatın Arthrospira platensis ’in ortalama klorofil a değişimine etkisi 79 Şekil 4.28. 10g/l içeren Sahra çözeltisi ve bu çözeltiye 300 mg/l olarak ilave edilen sülfat çözeltisinde Arthrospira platensis’in ortalama klorofil a değişimi 80 Şekil 4.29. BG11 çözeltisine ilave edilen fosfatın Arthrospira platensis’in ortalama klorofil a değişimine etkisi 81 Şekil 4.30. BG11 çözeltisine ilave edilen 70mg/l fosfatın Arthrospira platensis’in ortalama klorofil a değişimine etkisi 82 Şekil 4.31. Sahra çözeltisine ilave edilen 70,150 ve 300 mg/l fosfatın Arthrospira platensis’in ortalama klorofil a değişimine etkisi 84 Şekil 4.32. Sahra çözeltisine ilave edilen 70 mg/l fosfatın Arthrospira platensis’in ortalama klorofil a değişimine etkisi 84 Şekil 4.33. BBM çözeltisine ilave edilen 70, 150 ve 300 mg/l sülfatın Chlorella vulgaris’in ortalama klorofil a değişimine etkisi 87 Şekil 4.34. BBM çözeltisine ilave edilen 150 mg/l sülfatın Chlorella vulgaris’in ortalama klorofil a değişimine etkisi 87 Şekil 4.35. Sahra çözeltisine ilave edilen 300, 450 ve 600 mg/l sülfatın Chlorella vulgaris’in ortalama klorofil a değişimine etkisi 89 Şekil 4.36. Sahra çözeltisine ilave edilen 300 mg/l sülfatın Chlorella vulgaris’in ortalama klorofil a değişimine etkisi 89 Şekil 4.37. Sülfattan arındırılmış BBM ortamında ve BBM ortamına 70, 150 ve 300 mg/l fosfat ilavesi sonrasında Chlorella vulgaris’de izlenen ortalama klorofil a değişimi. 92 Şekil 4.38. Sülfattan arındırılmış BBM ortamında ve BBM ortamına 150 mg/l fosfat ilavesi sonrasında Chlorella vulgaris’de de izlenen ortalama klorofil a değişimi. 92 Şekil 4.39. Sahra çözeltisine ilave edilen 70, 150 ve 300 mg/l fosfatın Chlorella vulgaris’in ortalama klorofil a değişimine etkisi 94 Şekil 4.40. Sahra çözeltisine ilave edilen 70 mg/l fosfatın Chlorella vulgaris’in ortalama klorofil a değişimine etkisi 94 Şekil 4.41. BBM ortamında değişik Sülfat artışında Scenedesmus sp’de ortalama klorofil a değişimi (µg/l) 97 Şekil 4.42. BBM ortamında ve BBM ortamına 300 (mg/l) Na₂SO₄ ilave edilen halde Scenedesmus sp’de ortalama klorofil a değişimi(µg/l) 98 Şekil 4.43. Sahra çözeltisinde değişik Sülfat artışında Scenedesmus sp’de ortalama klorofil a değişimi(µg/l) 99 Şekil 4.44. 10g/l içeren Sahra çözeltisinde ve 10g/l içeren Sahra çözeltisine Sülfat ilave edilen halde Scenedesmus sp’de ortalama klorofil a değişimi(µg/l) 100 Şekil 4.45. BBM ortamında değişik Fosfat artışında Scenedesmus sp’ de ortalama klorofil a değişimi (µg/l) 102 Şekil 4.46. BBM ortamında ve BBM ortamına70 mg/l Fosfat artışında Scenedesmus sp’de ortalama klorofil a değişimi (µg/l) 103 Şekil 4.47. Sahra çözeltisi ve farklı fosfat içeren Sahra çözeltilerinde Scenedesmus sp’de ortalama klorofil a değişimi 104 Şekil 4.48. 10g/l içeren Sahra çözeltisi ve bu çözeltiye ilave edilen 70mg/l fosfat içeren çözeltide Scenedesmus sp’de ortalama klorofil a değişimi. 105 Şekil 4.49. Lemna minör’ de Sahra çözeltisinde ve sera suyunda spesifik büyüme oranı 110 Şekil 4.50. Lemna minör ’de Sahra çözeltisinde ve sera suyunda artan yaprak ortalaması 111 Şekil 4.51. L. minör ‘de Sahra çözeltisinde (10g/l) ve sera suyunda sararan yaprak görünümü 112 Şekil 4.52. Lemna minör’ de Sahra çözeltisinde ve sera suyunda sararan yaprak ortalaması 112 Şekil 4.53. Sahra çözeltisinde (10 g/l), 9-21 gün arasında sararan yaprak ortalaması 113 Şekil 4.54. Sera suyunda 7-21 gün arasında sararan yaprak ortalaması 114 Şekil 4.55. Lemna minör’ de Sahra çözeltisinde ve sera suyunda sararan yaprak ortalaması 114 Şekil 4.56. Farklı besi ortamlarının 20 günlük arpa fidelerinin dal ve kök uzunluğu üzerinde görsel etkisi 115 Şekil 4.57. 20 gün sonunda Hewitt, Sahra ve kontrol olarak damıtık suda büyütülen arpanın genel görünümü 116 Şekil 4.58. Değişik besi ortamlarında yetiştirilen arpa ‘da 20 gün sonunda ölçülen klorofil a değerleri 117 Şekil 4.59. Değişik besi ortamlarında yetiştirilen arpa ‘da 20 gün sonunda ölçülen ortalama klorofil b değerleri (µg/l) 118 Şekil 4.60. Değişik besi ortamlarında yetiştirilen arpa ’da 20 gün sonunda ölçülen ortalama klorofil a + b değerleri (µg/l) 119 Şekil 4.61. Değişik besi ortamlarında yetiştirilen arpa ‘da 20 gün sonunda ölçülen ortalama karotenoid değerleri (µg/l) 121 Şekil 4.62. Değişik besi ortamlarında yetiştirilen arpa ‘da 20 gün sonunda ölçülen ortalama karbon değerleri (%) 122 Şekil 4.63. Değişik besi ortamlarında yetiştirilen arpa ‘da 20 gün sonunda ölçülen ortalama azot yüzdeleri 123 Şekil 4.64. Değişik besi ortamlarında yetiştirilen arpa ‘da 20 gün sonunda ölçülen ortalama C/N oranı (%) 125 Şekil 4.65. Grafiksel değişik ortamlarda Aydan Hanım sertifikalı arpanın ortalama Sülfür oranı (%) 127tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjecttoz
dc.subjectbulut
dc.subjectalg
dc.subjectlemna minor
dc.subjectarpa
dc.subjectklorofil
dc.titleHavadan Gübre Oluşturulmasıtr_TR
dc.typeinfo:eu-repo/semantics/doctoralThesistr_TR
dc.description.ozetÖZET Havadan GÜBRE OLUŞTURULMASI Adeleh RASHIDI Doktora, Çevre Mühendisliği Bölümü Tez Danışmanı: Prof. Dr. A. Cemal Saydam Ağustos 2018, 153 sayfa Bu tez çalışması, daha önce yapılan bir dizi araştırma sonucunda ortaya çıkan ve doğadaki döngülerin nasıl çalıştığı hakkında yeterli bilgi birikiminin oluşması sonrasında o olayların taklit edilebilir olup olmadığının denenmesi şeklinde kurgulanmıştır. Doğadaki çöl tozu taşınımı süreçlerinde tozun bulut ile buluşması ile birlikte toz bulut ve güneş enerjisinin de etkisi ile tozların içinde bulunan bakteri ve mantarlar yine bulut içerisinde oluşan zengin bir besi ortamına kavuşmakta ve çoğalmaktadırlar. Bu oluşumun sonucunda bulut içerisinde doğanın kullanımına hazır her türlü element ve daha da değerli olan amino asitlerin oluştuğu yapılan çalışmalar ile gösterilmiştir. Bulut içerisinde oluşan bu zenginleşmiş suyun yere inmesi ile de alıcı ortamda olumlu gelişmelerin olduğu ancak bunun arkasındaki nedenin ne olduğu bilim dünyası tarafından bilinmemektedir. Bu çalışmada ise temel olarak çöl tozunun bulut içerisindeki reaksiyonları sonucunda oluşan reaksiyon ürünlerinin alıcı ortama etkileri nasıl olur yaklaşımı ile kurgulanmıştır. Yapılan çalışmalar alg gelişimi için ideal ortam olarak kabul edilen besi yerlerinin ideal olmadığını ispatlamıştır. Çalışmalarda öncelikle Sahra toz kullanım oranları tespit edilmiş ve ideal çözeltinin 10g/l olduğu saptanmıştır. İdeal besi ortamında alg sağlanan gelişmelerine hem miktar hem de zaman olarak daha kısa sürelerde ulaşılmıştır. Arthrospira platensis’in tür alg için ideal besi ortamında 7 günde sağlanan gelişime Sahra çözeltisi ile 5 günde ve %46 lık bir klorofil artışı ile ulaşılmıştır. Toz bulut etkileşiminin bulut içerisinde sürekli olarak sülfat artışına neden olmasından hareket ile Sahra çözeltisine ve ayrıca ideal besi ortamına sülfat sodyum sülfat olarak ilave edilmiştir. Bu koşullarda Arthrospira platensis’in yoğunluğunda sülfat ilavesi yapılan ideal besi ortamına göre %56 artış bu sefer 4 günde sağlanmıştır. Benzer gelişmeler Chlorella vulgaris ve Scendenesmus türü algler için de izlenmiştir. Durağan suların en yaygın türü olan Lemna minör veya su mercimeği ile yapılan deneylerde de Sahra çözeltisi ile beslenen türlerde yaprak sararmasının 3 gün gecikme ile başladığı dolayısı ile Sahralı suda tutulan Lemna minor’lerin çok daha sağlıklı olduğunu kanıtlamaktadır. Sahralı ortamda yaprak sararma eğimi 1.2 olurken sera suyunda bu eğim 2.2 olmaktadır. Bu da Sahralı ortamda klorofil a hücrelerinin çok daha etken ve daha uzun süre aktif kaldığını veya klorofil a hücrelerini daha fazla çalıştırabilmekte ve böylece yaşam süresince daha fazla enerji toplayabilmekte veya daha fazla karbon sabitleyebilmektedir. Aydan Hanım genotipi arpa ile yapılan deneylerin en önemli sonucu literatür değerlerine göre arpada %1,2 olan azot yüzde beklentisinin 10 g/l içeren Sahralı çözeltide %2,3 olarak beklenen seviyeye göre yaklaşık %100 artış göstermesi olmuştur. Durağan sulara verilen evsel atıkların da içerdiği fosfat nedeni ile ötrofikasyona neden olduğu tezi de yapılan deneyler ile çürütülmüş, ötrofikasyona neden olan olayın evsel atıklardan gelen sülfat nedeni ile olduğu gösterilmiştir. Bu çalışma ile Sahra tozlarının bulut içinde geçirdiği bir dizi reaksiyon sonucunda alıcı ortama etkileri ve yine doğal olayların anlaşılması sonrasında yapılan katkıların alıcı ortamdaki pozitif etkileri net bir şekilde gösterilmiştir. Dolayısı ile bu çalışma “havadan gübre” yapılmasının mümkün olacağını ve bu sulama sistemi ile klorofil a seviyesinin dolayısı ile daha çok enerjinin depolanmasını sağlayacak bir yöntemin de keşfedildiğini gösteren bir ilktir. Anahtar Kelimeler: Toz, bulut, alg, Lemna minor, arpa, klorofiltr_TR
dc.contributor.departmentÇevre Mühendisliğitr_TR
dc.contributor.authorID10212610tr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2018-10-05T11:00:15Z


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster