dc.contributor.advisor | SOYLU, A. Ruhi | |
dc.contributor.author | İNAM, Onur | |
dc.date.accessioned | 2018-08-17T12:12:42Z | |
dc.date.available | 2018-08-17T12:12:42Z | |
dc.date.issued | 2018-07-25 | |
dc.date.submitted | 2018-08-14 | |
dc.identifier.uri | http://hdl.handle.net/11655/4782 | |
dc.description.abstract | Optical coherence tomography is, also called as an optical biopsy, is a valuable tool, and used in many clinical and research areas, including the leading area of ophthalmology. 50 randomly chosen healthy cases, 25 females and 25 males, were included in the present study. 100 eyes of 50 patients were examined. Totally 400 structures were analyzed with vertical and horizontal scans of retinal and choroidal structures. The greater region of interest with a radius of 6500 m centered to foveal region, was divided into 100 m intervals. The 65 smaller region is further subdivided into 3 parts, as a result of 195 smaller regions were assigned. Retina and choroid were analyzed for the spot thickness, mean thickness, rectangular fill index, total retinal / choroidal area, dark retinal area / luminal choroidal area, light retinal area / stromal choroidal area, dark area percent / choroidal vascularity index, light area percent / stromal area percent, dark to light ratio / luminal to stromal ratio, mean, standard deviation, skewness, kurtosis, perimeter, width, height, major, minor, angle, integrated density, raw integrated density, feret, minimum feret, feret angle, circularity, aspect ratio, roundness, solidity, mean and spot retinal to choroidal thickness ratio, mean and spot choroidal to retinal thickness ratio parameters. A semi-automatic program, RET-INAM was coded in Fiji / ImageJ program by the research team and used to obtain the results. In conclusion, it is possible to propose several parameters as some novel diagnostic and evaluative indicators simply extracted by image processing of optical coherence tomography scans. | en |
dc.description.tableofcontents | APPROVAL PAGE III
YAYINLAMA VE FİKRİ MÜLKİYET HAKLARI BEYANI IV
ETHICAL DECLARATION PAGE V
ACKNOWLEDGMENTS VI
ABSTRACT VII
ÖZET VIII
CONTENTS IX
ABBREVIATIONS XIV
LIST OF FIGURES XVII
LIST OF TABLES XIX
1. INTRODUCTION AND AIM 1
2. GENERAL INFORMATION 2
2.1. RETINA 2
2.1.1. RETINAL MACROSCOPIC ANATOMY 2
2.2.2. RETINAL MICROSCOPIC ANATOMY 3
2.2.3. RETINAL HISTOLOGY 5
2.2.4. FUNCTIONAL RETINA 6
2.2. CHOROID 6
2.1.1. CHOROIDAL MACROSCOPIC ANATOMY 6
2.2.2. CHOROIDAL MICROSCOPIC ANATOMY 8
2.2.3. CHOROIDAL HISTOLOGY 9
2.2.4. FUNCTIONAL CHOROID 10
2.3. OCT 10
2.3.1. HISTORY AND DEVELOPMENT OF OCT 10
2.3.2. PRINCIPLES OF OCT 11
2.3.3. OCT TYPES 13
2.3.4. APPLICATIONS OF OCT 16
2.3.5. OPHTHALMOLOGY AND OCT 19
2.3.6. OPHTHALMOLOGICAL DISEASES AND OCT 21
2.4. CHOROIDAL VASCULARITY INDEX 26
3. MATERIALS AND METHODS 28
3.1. RESEARCH LOCATION, TIME AND SAMPLING 28
3.2. INCLUSION AND EXCLUSION CRITERIA 28
3.2.1. INCLUSION CRITERIA 28
3.2.2. EXCLUSION CRITERIA 29
3.3. DATA COLLECTION TOOL 29
3.4. DATA COLLECTION PROCESS 30
3.5. IMAGE PROCESSING 30
3.5.1. OBTAINING THE IMAGES 30
3.5.2. OPENING THE IMAGES AT FIJI/IMAGEJ 31
3.5.3. RETINAL AND CHOROIDAL ROI DRAWING 32
3.5.4. SAMPLING RATE 32
3.5.5. PROCESSED AREAS 33
3.5.6. BINARIZATION PROCESS 34
3.5.7. ANALYZED PARAMETERS 34
3.6. SEMI-AUTOMATED RET-INAM PROGRAM 43
3.6.1. PURPOSE OF RETINAM 43
3.6.2. AUTOMATED FUNCTIONS OF RETINAM 44
3.7. STATISTICAL ANALYSIS 45
3.8. ETHICAL COMITEE APPROVAL 46
4. RESULTS 47
4.1. DEMOGRAPIC AND GENERAL RESULTS 47
4.2. RETINAL RESULTS 48
4.2.1. RETINAL SPOT THICKNESS 48
4.2.2. RETINAL MEAN THICKNESS 49
4.2.3. RETINAL RFI 51
4.2.4. TRA 53
4.2.5. DRA 55
4.2.6. LRA 56
4.2.7. DAP 58
4.2.8. LAP 60
4.2.9. DLR 62
4.2.10. RETINAL MEAN 63
4.2.11. RETINAL STANDARD DEVIATION 65
4.2.12. RETINAL SKEWNESS 67
4.2.13. RETINAL KURTOSIS 69
4.2.14. RETINAL PERIMETER 71
4.2.15. RETINAL WIDTH 72
4.2.16. RETINAL HEIGHT 73
4.2.17. RETINAL MAJOR 75
4.2.18. RETINAL MINOR 76
4.2.19. RETINAL ANGLE 77
4.2.20. RETINAL INTEGRATED DENSITY 79
4.2.21. RETINAL RAW INTEGRATED DENSITY 81
4.2.22. RETINAL FERET 83
4.2.23. RETINAL MINIMUM FERET 84
4.2.24. RETINAL FERET ANGLE 85
4.2.25. RETINAL CIRCULARITY 87
4.2.26. RETINAL ASPECT RATIO 89
4.2.27. RETINAL ROUNDNESS 91
4.2.28. RETINAL SOLIDITY 93
4.3. CHOROIDAL RESULTS 95
4.3.1. CHOROIDAL SPOT THICKNESS 95
4.3.2. CHOROIDAL MEAN THICKNESS 96
4.3.3. CHOROIDAL RFI 98
4.3.4. TCA 100
4.3.5. LCA 102
4.3.6. SCA 103
4.3.7. CVI 105
4.3.8. SAP 107
4.3.9. LSR 109
4.3.10. CHOROIDAL MEAN 110
4.3.11. CHOROIDAL STANDARD DEVIATION 112
4.3.12. CHOROIDAL SKEWNESS 114
4.3.13. CHOROIDAL KURTOSIS 116
4.3.14. CHOROIDAL PERIMETER 118
4.3.15. CHOROIDAL WIDTH 119
4.3.16. CHOROIDAL HEIGHT 120
4.3.17. CHOROIDAL MAJOR 122
4.3.18. CHOROIDAL MINOR 123
4.3.19. CHOROIDAL ANGLE 124
4.3.20. CHOROIDAL INTEGRATED DENSITY 126
4.3.21. CHOROIDAL RAW INTEGRATED DENSITY 128
4.3.22. CHOROIDAL FERET 130
4.3.23. CHOROIDAL MINIMUM FERET 131
4.3.24. CHOROIDAL FERET ANGLE 132
4.3.25. CHOROIDAL CIRCULARITY 134
4.3.26. CHOROIDAL ASPECT RATIO 136
4.3.27. CHOROIDAL ROUNDNESS 138
4.3.28. CHOROIDAL SOLIDITY 139
4.4. RETINAL AND CHOROIDAL COMBINED RESULTS 141
4.4.1. sRCTR RESULTS 141
4.4.2. mRCTR RESULTS 142
4.4.3. sCRTR RESULTS 144
4.4.4. mCRTR RESULTS 145
4.4.5. BETWEEN VERTICAL AND HORIZONTAL RESULTS 147
4.4.7. SCAN REGIONS AND AGE GROUPS 154
4.4.8. CORRECTION CALCULATION RESULTS 158
5. DISCUSSION 159
6. CONCLUSION 169
7. REFERENCES 170
8. APPENDIX
APPENDIX-1: SUPPLEMENT
APPENDIX-2: ETHICAL COMMITTEE APPROVAL
APPENDIX-3: ORGINALITY REPORT
9. CURRICULUM VITAE | tr_TR |
dc.language.iso | en | tr_TR |
dc.publisher | Sağlık Bilimleri Enstitüsü | tr_TR |
dc.rights | info:eu-repo/semantics/openAccess | tr_TR |
dc.subject | Choroidal Vascularity Index | tr_TR |
dc.subject | Tissue Distribution Indexes | |
dc.subject | Choroid, Retina | |
dc.subject | Optical Coherence Tomography | |
dc.subject | Digital Image Processing | |
dc.title | Calculatıon of Choroıdal Vascularıty Index and Tıssue Dıstrıbutıon Indexes by Dıgıtal Processıng of Retınal and Choroıdal Images Obtaıned Vıa Optıcal Coherence Tomography | tr_TR |
dc.type | info:eu-repo/semantics/doctoralThesis | en |
dc.description.ozet | Optik koherens tomografi, optik biyopsi olarak da adlandırılan ve önde gelen oftalmoloji alanı da dahil olmak üzere birçok klinik ve araştırma alanında kullanılan değerli bir araçtır. Bu çalışmaya 25 kadın ve 25 erkek olmak üzere toplam 50 rastgele seçilmiş sağlıklı olgu dahil edildi. 50 hastanın 100 gözü alındı. Retinal ve koroidal yapıların dikey ve yatay taramaları dahil olmak üzere toplam 400 yapı analiz edildi. 6500 m foveal merkezli ilgilenen büyük 100 mikron aralıklarla bölünmüştür. Bu 65 küçük bölge, 3 bölgeye daha ayrılmış ve sonuç olarak 195 daha küçük bölge elde edilmiştir. Yapılar noktasal kalınlık, ortalama kalınlık, dikdörtgen dolgu indeksi, total retinal / koroidal alan, koyu retinal alan / luminal koroidal alan, açık retinal alan / stromal koroidal alan, karanlık alan yüzdesi / koroidal vaskülarite indeksi, açık alan yüzdesi / stromal alan yüzdesi, karanlık açık oranı / lüminal stromal oran, ortalama, standart sapma, çarpıklık, basıklık, çevre, genişlik, yükseklik, majör, minör, açı, tümleşik yoğunluk, ham tümleşik yoğunluk, feret, minimum feret, feret açısı, dairesellik , boy oranı, yuvarlaklık, solidite, noktasal ve ortalma retinal koroidal kalınlık oranı, noktasal ve ortalama koroidal retinal kalınlık oranı parametreleri için analiz edildi. Yarı otomatik bir program olan RET-INAM, araştırma ekibi tarafından Fiji / ImageJ programında kodlanmış ve sonuçları elde etmek için kullanılmıştır. Sonuç olarak, optik koherens tomografi taramalarında görüntü işlemenin sonucu otaya çıkan birçok parametrenin yeni bir teşhis ve değerlendirme aracı olarak kullanılması mümkündür. | tr_TR |
dc.contributor.department | Biyofizik | tr_TR |
dc.contributor.authorID | 199299 | tr_TR |