Basit öğe kaydını göster

dc.contributor.advisorKaptan, Fitnat
dc.contributor.authorGül, Esma
dc.date.accessioned2018-03-16T07:36:10Z
dc.date.available2018-03-16T07:36:10Z
dc.date.issued2018-01-24
dc.date.submitted2018-01-24
dc.identifier.citationA.A.A.S, (2003). Middle Grades Science Textbooks: A Benchmarks-Based Evaluation Instructional Analysis. Retrieved from http://project2061.org/tools/textbook/mgsci/BSCS/BSCS_es3.htm Akgündüz, D., Aydeniz, M., Çakmakçı, G., Çavaş, B., Çorlu, M.S., Öner, T., & Özdemir, S. (Eds.) (2015). STEM eğitimi Türkiye raporu: “Günün modası mı? Yoksa gereksinim mi?” İstanbul: STEM Merkezi ve Eğitim Fakültesi, İstanbul Aydın Üniversitesi. Ekim 2016 tarihinde www.aydin.edu.tr/belgeler/IAU-STEM-Egitimi-Turkiye-Raporu-2015.pdf adresinden erişildi. Albe, V. (2008). Students’ positions and considerations of scientific evidence about a controversial socioscientific issue. Science & Education, 17(8-9), 805-827. Altan, E., Yamak, H., Kırıkkaya, E. (2015). FeTeMM eğitim yaklaşımının öğretmen eğitiminde uygulanmasına yönelik bir öneri: Tasarım temelli fen eğitimi. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 6(2), 212-232 Augustine, N. R. (2005). Rising above the gathering storm: energizing and employing America for abrighter economic future. National Academies Press, Washington, DC. Balay, R. (2004). Küreselleşme, Bilgi Toplumu ve Eğitim. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 37(2), 61-82. Baran, E., Canbazoğlu-Bilici, S. ve Mesutoğlu, C. (2015). Fen, teknoloji, mühendislik ve matematik (FeTeMM) spotu geliştirme etkinliği. Araştırma Temelli Etkinlik Dergisi (ATED), 5(2), 60-69. Batı, K., Çalışkan, İ., Yetişir, M. İ. (2017). Fen eğitiminde bilgi işlemsel düşünme ve bütünleştirilmiş alanlar yaklaşımı (STEAM): PAU Eğitim Fak. Dergisi. 41, 91-103. Bicer, A., Navruz, B., Capraro, R. M., & Capraro, M. M. (2014). STEM schools vs. Non-STEM schools: Comparing students’ mathematics state based test performance. International Journal of Global Education, 3(3), 8-18. Bicer, A., Boedeker, P., Capraro, R.M., & Capraro, M.M. (2015). The effects of STEM PBL on students’ mathematical and scientific vocabulary knowledge. International Journal of Contemporary Educational Research, 2(2), 69-75 Bingolbali, E., Monaghan, J., & Roper, T. (2007). Engineering students’ conceptions of the derivative and some implications for their mathematical education. International Journal of Mathematical Education in Science and Technology, 38(6), 763-777. Boaler, J. (1998). Open and closed mathematics approaches: Student experiences and understandings. Journal for Research in Mathematics Education, 29, 41-62 Bogdan, R. C., & Biklen, S. K. (2007). Qualitative research for education: An introduction to theories and methods. Boston: Person. Bonk, C. J., & Khoo, E. (2014). Adding some TEC-VARIETY: 100+ Activities for motivating and retaining learners online. Retrieved from http://tec-variety.com/ Buyruk, B. ve Korkmaz, Ö. (2016). FeTeMM farkındalık ölçeği (FFÖ): Geçerlik ve güvenirlik çalışması. Türk Fen Eğitimi Dergisi, 13(2), 61-76. Büyüköztürk, Ş., Kılıç-Çakmak, E., Akgün, Ö. E., Karadeniz, Ş., ve Demirel, F. (2012). Bilimsel araştırma yöntemleri. Ankara: Pegem Akademi. Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70(1), 30-35. Bybee, R. W. (2013). The Case for STEM education: Challenges and opportunities. Ar-lington, Virginia: NSTA Press. Capraro, R. M., Corlu, M. S. (2013). Changing views on assessment for STEM project-based learning, Sense Publishers, 2, 109-118. Capraro, R. M., & Slough, S. W. (Ed.) (2008). Project-based learning: An integrated science, technology, engineering, and mathematics (STEM) approach. Rotterdam, The Netherlands: Sense. Corlu, M. S., Capraro, R. M. & Capraro, M. M. (2014). FeTeMM Eğitimi ve Alan Oğretmeni Eğitimine Yansımaları. Eğitim ve Bilim, 39(171), 74-85. Carroll, M. (2015). Stretch, dream, and do-a 21st century design thinking & STEM journey. Journal of Research in STEM Education. 1, 59-70. Cho, B. and Lee, J. (2013, November). The Effects of Creativity and Flow on Learning through the STEAM Education on Elementary School Contexts. Paper presented at the International Conference of Educational Technology, Sejong University, South Korea. Çoban G., Akpınar E., Baran B. ve Sağlam M. (2016). Fen bilimleri öğretmenleri için “teknolojik pedagojik alan bilgisi temelli argümantasyon uygulamaları” eğitiminin değerlendirilmesi. Eğitim ve Bilim, 41, 1-13. Çorlu, M. S. (2013). Insights into STEM education praxis: An assessment scheme for course syllabi. Educational Sciences: Theory & Practice, 13(4), 1-9. Çorlu, M. A. ve Aydin, E. (2016). Evaluation of learning gains through integrated STEM projects. International Journal of Education in Mathematics, Science and Technology, 4(1), 20-29. Çorlu, M. S., Capraro, R. M., & Capraro, M. M. (2014). Introducing STEM education: Implications for educating our teachers in the age of innovation. Education and Science, 39(171), 74-85. Cohen, L., Manion, L., & Marrison, K. (2000). Research Methods in Education. (5th ed.). London: Routledge & Falmer: Sage. Corbett, K. S., & Coriell, J. M. (2014). STEM explore, discover, apply – A middle school elective (curriculum exchange). ASEE Annual Conference. Indianapolis, Indiana. Retrieved from https://peer.asee.org/23034 Cotabish, A., Dailey, D., Robinson, A., & Hughes, G. (2013). The effects of a STEM intervention on elementary students’ science knowledge and skills. School Science and Mathematics, 113(5), 215-226. Cowie, B., Bell, B. (1999). A Model of Formative Assessment in Science Education. Assessment in Education, Vol. 6. Creswell, J. W. (2007). Qualitative inquiry research design: Choosing among five approaches (2nd ed.). Thousand Oaks, CA: Sage Çorlu, M., Çallı, E. (2017). Kuram ve uygulamalarıyla fen, teknoloji, mühendislik ve matematik eğitimi. İstanbul: Pusula Yayıncılık. Dawson, V.M. (2011). A case study of the impact of introducing socio-scientific issues into a reproduction unit in a Catholic Girls’ school. T. D. Sadler (Ed.). Socio-scientific Issues in the Classroom (313-345). New York: Springer Dordect. Demirel, Ö. (2006). Eğitimde program geliştirme: Kuramdan uygulamaya (8. bs). Ankara: Pegem A Yayıncılık. Dewaters, J., & Powers, S. (2006). Improving science literacy through project-based K-12 outreach efforts that use energy and environmental themes. Proceedings of the 113th Annual ASEE Conference & Exposition, Chicago, IL. Dewey, J. (1997). How we think? New York: Prometheus Books. Dieker, L., Grillo, K., & Ramlakhan, N. (2012). The use of virtual and stimulated teaching and learning environments: Inviting gifted students into science, technology, engineering, and mathematics careers (STEM) through summer partnerships. Gifted Education International, 28(1), 96-106. Dugger, E. W. (2010). Evolution of STEM in the United States. 6th Biennial International Conference on Technology Education Research, Australia. Retrieved from http://www.iteea.org/Resources/PressRoom/AustraliaPaper.pdf EACEA/Eurydice, 2011. Grade retention during compulsory education in europe: Regulations and statistics. Brussels: EACEA/Eurydice. Elliott, B., Oty, K., McArthur, J., & Clark, B. (2001) The effect of an interdisciplinary algebra/science course on students' problem solving skills, critical thinking skills and attitudes towards Mathematics. International Journal of Mathematical Education in Science and Technology, 32(6), 811-816. Erdoğan, N., Çorlu, M. S., & Capraro, R. M. (2013). Defining innovation literacy: Do robotics programs help students develop innovation literacy skills?. International Online Journal of Educational Sciences, 5(1), 1-9. Erişen, Y. Kasım 2017 tarihinde yavuzerisen.com/wp-content/uploads/2015/09/PROGRAM-GELISTIRME.ppt adresinden erişildi. Ertürk, S. (1975). Eğitimde program geliştirme. Ankara: Yelkentepe Yayınları. Eroğlu, S., & Bektaş, O. (2016). STEM eğitimi almış fen bilimleri öğretmenlerinin stem temelli ders etkinlikleri hakkındaki görüşleri. Eğiitimde Nitel Araştırmalar Dergisi. Journal of Qualitative Research in Education, 4(3), 43-67. Gencer, A. (2015). Fen eğitiminde bilim ve mühendislik uygulaması: Fırıldak etkinliği. Araştırma Temelli Etkinlik Dergisi (ATED), 5(1), 1-19. Gökbayrak, S. ve Karışan, D. (2017). Altıncı Sınıf Öğrencilerinin FeTeMM Temelli Etkinlikler Hakkındaki Görüşlerinin İncelenmesi. Alan Eğitim Araştırmaları Dergisi, 3(1), 25-40. Guzey, S. S., Moore, T. J., Harwell, M., & Moreno, M. (2016). STEM integration in middle school life science: Student learning and attitudes. J Sci Educ Technol, 25, 550-560. Gülhan, F. ve Şahin, F. (2016). Fen-Teknoloji-Mühendislik-Matematik entegrasyonunun (STEM) 5. sınıf öğrencilerinin bu alanlarla ilgili algı ve tutumlarına etkisi. International Journal of Human Science, 13(1), 602-620. Gürol, A. (2006). Eğitim programları ve planlanması. M. Gürol (Ed.), Öğretimde planlama ve değerlendirme içinde (4. bs., s. 17-40). Ankara: Akış Yayıncılık. Houston, M., & Lin, L. (2012). Humanizing the classroom by flipping the homework versus lecture equation. Paper presented at Society for information technology & teacher education international conference, Austin, TX. ITEEA (International Technology and Engineering Educators Association) (1996). Technology for all Americans: A Rationale and structure for the study of Technology. Reston, VA: Author Jon, J. E. ve Chung, H. I. (2013). Consultant report securing Australia’s future STEM: Country comparisons-STEM Report Republic of Korea. Judson, E., & Sawada, D. (2000). Examining the effects of a reformed junior high school science class on students’ mathematics achievement. School Science and Mathematics, 100, 419-425. Kanlı, U., Yağbasan, R. (2004). Ortaöğretim Fen ve Matematik Ders Kitaplarının Eğitimsel Tasarımının Değerlendirilmesi. Eğitim ve Bilim Dergisi. Kızılay, E. (2016). Fen bilgisi öğretmen adaylarının FeTeMM alanları ve eğitimi hakkındaki görüşleri. The Journal of Academic Social Science Studies, 47, 403-417. Kier, M. W., Blanchard, M. R., Osborne, J. W., & Albert, J. L. (2013). The development of the STEM career interest survey (STEM-CIS). Research in Science Education, 44(3), 461-481. Kim, E. J., Kim, S. H., Nam, D. S. and Lee, T.W. (2012). Development of STEAM Program Math Centered for Middle School Students. Department of Computer Education, Korea National University of Education, Korea. Knezek, G., Christensen, R., Tyler-Wood, T., & Periathiruvadi, S. (2013). Impact of environmental power monitoring activities on middle school student perceptions of STEM. Science Education International, 24(1), 98-123. Kolsto, S.D. (2001). ‘To trust or not to trust,...’– pupils’ ways of judging information encountered in a socio-scientific issue. International Journal of ScienceEducation, 23(9), 877–901. Kolsto, S.D. (2006). Patterns in students’ argumentation confronted with a risk-focused socio-scientific issue. International Journal of Science Education, 28(14), 1689-1716. Lin, K. Y., & Williams, P. J. (2015). Taiwanese preservice teachers’ science, technology, engineering, and mathematics teaching intention. International Journal of Science and Mathematics Education, 14, 1021-1036. Martin, J., D. (1997). Elemantary Science Methods: A Constructivist Approach. USA: Delmar Publishers. An International Thomson Publishing Company. Martin, M.O. et al., 2008. TIMSS 2007 International Science Report: Findings from IEA’s Trends in International Mathematics and Science Study at the Fourth and Eighth Grades. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College. Marulcu, İ. ve Sungur, K. (2012). Fen bilgisi öğretmen adaylarının mühendis ve mühendislik algılarının ve yöntem olarak mühendislik-dizayna bakış açılarının incelenmesi. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, 12(2012), 13-23. MEB (Milli Eğitim Bakanlığı) (2013). İlköğretim kurumları (ilkokullar ve ortaokullar) Fen Bilimleri Dersi (3, 4, 5, 6, 7 ve 8. sınıflar) öğretim programı. Ekim 2017 tarihinde http://ttkb.meb.gov.tr/www/guncellenen-ogretimprogramlari/icerik/151 adresinden erişildi. MEB (Milli Eğitim Bakanlığı) (2016). STEM eğitimi raporu. Ankara: Milli Eğitim Bakanlığı Yenilik ve Eğitim Teknolojileri Genel Müdürlüğü (YEĞİTEK). Miles, M., B., Huberman, A., M. (1994). Qualitative Data Analysis (2nd ed.) Sage Publications Thousand Oaks, CA. Morgan, J. R., Moon, A. M ve Barrosso, L., R. (2013). Engineering better projects. In STEM Project-Based Learning (pp. 29-39). SensePublishers. Morrison, J. (2006). TIES STEM education monograph series, attributes of STEM education. Retrieved from https://www.partnersforpubliced.org Mullis, I.V.S. et al., 2005. TIMSS 2007 assessment frameworks. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Lynch School of Education, Boston College, cop. 2005. National Academy of Engineering and the National Research Council. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington, DC: The National Academies Press. National Research Council (NRC).(1996). National Science Education Standards. National Academy Press. Washington D.C. National Research Council (2011a) Learning science through computer games and simulations. The National Academies Press, Washington, DC. National Research Council (2011b) Report of a workshop of pedagogical aspects of computational thinking. The National Academies Press, Washington, DC. Nielsen, J.A. (2012a). Arguing from Nature: The role of ‘nature’ in students’ argumentations on a socio-scientific issue. International Journal of Science Education, 34(5), 723-744. Nelson, G. D. (1999). Proje 2061-Science Literacy for a Changing Future. American Association for the Advancement of Science. (4-6). NRC (National Research Council) (2010). Exploring the intersection of science education and 21st century skills: A workshop summary. Washington, DC: National Academies Press. NRC (National Research Council) (2012). A Framework for k-12 science education: Practices, crosscutting concepts, and core ideas. Washington DC: The National Academic Press. OECD (2012). Education at a Glance 2012: Highlights. OECD Publishing. Retrieved from http://www.oecd.org/ edu/highlights.pdf Olson, S., & Labov, J. (2014). STEM learning is everywhere: summary of a convocation on building learning systems. National Academies Press. Oulton, C., Dillon, J., & Grace, M.M. (2004): Reconceptualizing the teaching of controversial issues. International Journal of Science Education, 26(4), 411-423. Öner, A. T. ve Capraro, R. M. (2016). FeTeMM okulu olmak iyi öğrenci başarısı anlamına mı gelir?. Eğitim ve Bilim, 41(185), 1-17. Padilla, M. J. (1984). The science process skills. “Research Matters… To the Science Teacher.” National Association for Research in ScienceTeaching. Pantic, Z. (2007). STEM sell. New England Journal of Higher Education, 22(1), 25-26. Pekbay, C. (2017). Fen teknoloji mühendislik ve matematik etkinliklerinin ortaokul öğrencileri üzerindeki etkinlikleri. (Yayınlanmamış doktora tezi) Hacettepe Üniversitesi, Ankara. Roberts, A. (2012). A justification for STEM education. Technology and Engineering Teacher, 71(8), 1-4. Sadler, T. D. (2004). Informal reasoning regarding SSI: A critical review of research. Journal of Research in Science Teaching, 41(5), 513–536. Sadler, T. D., & Zeidler, D. L. (2004). The morality of SSI: Construal and resolution of genetic engineering dilemmas. Science Education, 88, 4–27. Sadler, T. D. (2006). Promoting discourse and argumentation in science teacher education. Journal of Science Teacher Education, 17, 323-346. Sadler, T.D., Amirshokoohi, A., Kazempour, M., & Allspaw, K. (2006). Socioscience and ethics in science classrooms: Teacher perspectives and strategies. Journal of Research in Science Teaching, 43, 353–376. Topçu, M. S., Sadler, T. D., & Yilmaz-Tuzun, O. (2010). Preservice science teachers’ informal reasoning about socioscientific issues: The influence of issue context. International Journal of Science Education, 32(18), 2475-2495. Scott, A., & Martin, A. (2012). Dissecting the data 2012: Examining STEM opportunities and outcomes for underrepresented students in California. Retrieved from http://toped.svefoundation.org/wpcontent/uploads/2012/04/Achieve-LPFIstudy032812.pdf Scott, C. E. (2009). A comparative case study of the characteristics of science, technology, engineering, and mathematics (STEM) focused high schools (Yayımlanmamış doktora tezi). George Mason University, Fairfax, VA. Stuyvesant High School. (2014). History of the school. Retrieved from http://stuy.edu Sungur-Gül, K. ve Marulcu, İ. (2014). Yöntem olarak mühendislik-dizayna ve ders materyali olarak legolara öğretmen ile öğretmen adaylarının bakış açılarının incelenmesi. International Periodical for The Languages, Literature and History of Turkish or Turkic, 9(2), 761-786. STEM Akademi. (2013). Dünyada STEM. Nisan 2016 tarihinde www. stemakademi.com.tr. adresinden erişildi. Şahin, A., Ayar, M. C. ve Adıgüzel, T. (2014). Fen, teknoloji, mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri. Kuram ve Uygulamada Eğitim Bilimleri, 14(1), 297-322. Teddlie, C., & Tashakkori, A. (2009). Foundations of mixed methods research. Thousand Oaks, CA: Sage. Tuttle, H., G. (2008). Formative Assessment Responding to Your Students TÜSİAD (Türk Sanayicileri ve İş Adamları Derneği) (2014). Sorumluluk Bildirimi Raporu 2014-2015. Ekim 2017 tarihinde http://tusiad.org/tr/yayinlar/raporlar/item/8658-tusiad-2014-2015-sorumluluk-bildirimi-raporunu-yayimladi adresinden erişildi. Van der Zande, P.A.M. (2011). Empowering teachers to teach socioscientific issues: the role of teacher identity in teaching. D. J. Boerwinkel, and A. J. Waarlo, (Eds.). Genomics Education for Decision making (117-124). FISME series on Research in Science Education No. 67. Utrecht: CD-β Press. Walker, K., & Zeidler, D.L. (2007). Promoting discourse about socioscientific issues through scaffolded inquiry. International Journal of Science Education, 29(11), 1387-1410. Wang, X. (2013). Why students choose STEM majors: Motivation, high school learning, and postsecondary context of support. American Educational Research Journal, 50(5), 1081-1121. Wendell, K. B., & Rogers, C. (2013). Engineering design-based science, science content performance, and science attitudes in elementary school. Journal of Engineering Education, 102(4), 513-540. Wendell, K., Connolly, K., Wright, C., Jarvin, L., Rogers, C., Barnett, M. and Marulcu, I. (2010, October). Incorporating engineering design into elementary school science curricula. Paper presented at the Annual Meeting of American Society for Engineering Education, Singapore. Wiggins, G.P. & Mctighe, J. (2005). Understanding by Design. Association for Supervision and Curriculum Development. (ASCD). Wing, J. M. (2008). Computational thinking and thinking about computing. Phil. Trans. R. Soc. 366, 3717–3725 Wing J. (2014) Computational Thinking Benefits Society. 40th Anniversary Blog of Social Issues in Computing Yalçın, H., Ateş Sönmezoğlu, Ö., Akın, S. & Sönmezoğlu, S. (2014). Ortaöğretim öğrencilerinin mühendislik bilimlerine yönelik ilgileri. The Journal of Academic Social Science Studies, 27, 135-153. Yakman, G, (2008). STΣ@M Education: an overview of creating a model of integrative education. Pupils Attitudes Towards Technology. 2008 Annual Proceedings. Netherlands. Yamak, H., Bulut, N. ve Dündar, S. (2014). 5. sınıf öğrencilerinin bilimsel süreç becerileri ile fene karşı tutumlarına FeTeMM etkinliklerinin etkisi. Gazi Üniversitesi Eğitim Fakültesi Dergisi, 34(2), 249-265. Yaşar, Ş., Baker, D., Robinson-Kurpius, S., Krause, S., & Roberts, C. (2006). Development of a survey to assess K-12 teachers' perceptions of engineers and familiarity with teaching design, engineering, and technology. Journal of Engineering Education, 205-216. Yıldırım, B. ve Altun, Y. (2015). STEM eğitim ve mühendislik uygulamalarının fen bilgisi laboratuar dersindeki etkilerinin incelenmesi. El-Cezeri Journal of Science and Engineering, 2(2), 28-40. Yıldırım, A., Şimşek, H. (2008). Sosyal Bililerde Nitel Araştırma Yöntemleri. Seçkin Yayıncılık. Ankara. Young V. M., House, A., Wang, H., Singleton, C., SRI International ve Klopfenstein, K. (2011). Inclusive STEM schools: Early promise in Texas and unanswered questions. National Research Council Workshop on Successful STEM Education in K-12 Schools toplantısında sunulmuş bildiri. Ekim 2017 tarihinde http://sites.nationalacademies.org/cs/groups/dbassesite/documents/webpage/dbasse_072639.pdf adresinden erişildi.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/4387
dc.description.abstractThe aim of the research is to determine the effects of STEM-based curriculum on seventh grade students' attitudes towards science process skills, attitudes towards science courses, attitudes towards socio-scientific aspects, creating a class environment which STEM activities are applied, and to find out the student perceptions about the use and effectiveness of the curriculum. This Stem-based curriculum, designed according to Demirel program development model, were developed and applied in science applications course by the researcher. The study was carried out in the framework of a 19-week period model in a stem-based curriculum which was applied in the spring semester of 2016-2017 academic year with 78 students in Meliksah Secondary School in Ankara province, Sincan County. In the research, nested pattern of mixed method research used qualitative and quantitative approaches together was used. Quantitative data collection tools of research are Scientific Process Skills Test (SPST), Science Teaching Attitude Scale (STAS) and Attitudes toward Socio-Scientific Issues Questionnaire (SSIQ) which are developed by selecting from TIMMS and PISA questions. The qualitative data collection tools of the research are presentation observation form, science notebooks and comments of students, science class image studies and semi-structured interviews made with students. The quantitative data obtained in the study were analyzed by the t-test technique. Interviews, observations and documents were analyzed with descriptive analysis and content analysis technique. Image studies data were analyzed by chi-square analysis technique. It was determined that there was a statistically significant difference in favor of the experimental group in terms of the attitudes towards scientific process skills and socio-scientific issues after the application. Qualitative data obtained from student interviews, observations, document analyzes and science class image studies support quantitative findings. It is concluded that the application has developed scientific process skills, increased their motivation to STEM areas, affected positively towards socio-scientific issues.tr_TR
dc.description.tableofcontentsÖz ii Abstract iv Teşekkür vi Tablolar Dizini x Şekiller Dizini xiv Simgeler ve Kısaltmalar Dizini xvii Bölüm 1 Giriş 1 Problem Durumu 1 Araştırmanın Amacı ve Önemi 7 Problem Cümlesi 10 Sayıltılar 11 Sınırlılıklar 12 Tanımlar 12 Bölüm 2 Araştırmanın Kuramsal Temeli ve İlgili Araştırmalar 14 Araştırmanın Kuramsal Temeli 14 İlgili Araştırmalar 29 Bölüm 3 Yöntem 40 Araştırmanın Deseni 40 Araştırmada Kullanılan Nitel Analiz Türleri 43 Çalışma Grubu 45 Veri Toplama Araçları 48 Veri Toplama Araçlarının Uygulanışı 65 Araştırmanın Uygulanması 66 Verilerin Analizi 78 Araştırmanın Geçerlik ve Güvenirliği 79 Etik 81 Bölüm 4 Bulgular 82 Bilimsel Süreç Becerileri Başarı Testine İlişkin Bulgular 82 Fen Bilimleri Dersi Tutum Ölçeğine İlişkin Bulgular 87 Sosyobilimsel Konulara Yönelik Tutum Ölçeğine İlişkin Bulgular 90 Nitel Analiz Bulguları 92 Bölüm 5 Sonuç, Tartışma ve Öneriler 160 Sonuç ve Tartışma 160 Öneriler 170 Kaynaklar 173 EK-A: Öğrenci Gönüllü Katılım Formu 184 EK-B: Fen Bilimleri Dersine Yönelik Tutum Ölçeği Kullanım İzni 185 EK-C: Sosyobilimsel Konulara Yönelik Tutum Ölçeği Kullanım İzni 186 EK-Ç: Veli Onay Formu 186 EK-D: Odak Grup Görüşme Soruları 188 EK-E: Bilimsel Süreç Becerileri Testi 189 EK-F: Bilimsel Süreç Becerileri Testi Puanlama Anahtarı 202 EK-G: Fen Bilimleri Dersine Yönelik Tutum Ölçeği 212 EK-H: Sosyobililimsel Konulara Yönelik Tutum Ölçeği 213 EK-I: Sunuş Gözlem Formu 215 EK-J: Bilim Uygulamaları Dersi Kazanımları 221 EK-K: Odak Grup Görüşmeleri Transkriptleri 223 EK-L: Etkinlik Planları 233 EK-M: Bilimsel Süreç Becerileri Testi Belirtke Tablosu 289 EK-N: Bilimsel Süreç Becerileri Başarı Testi BSB Belirtke Tablosu 292 EK-O: Etik Komisyonu Onay Bildirimi 294 EK-P: MEB Araştırma İzni 295 EK-R: Etik Beyanı 296 EK-S: Doktora Tez Çalışması Orijinallik Raporu 297 EK-Ş: Dissertation Originality Report 298 EK-T: Yayımlama ve Fikrî Mülkiyet Hakları Beyanı 299tr_TR
dc.language.isoturtr_TR
dc.publisherEğitim Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectFeTeMM merkezli öğretim programıtr_TR
dc.subjectFeTeMM eğitimi
dc.subjectFeTeMM etkinlikleri
dc.subjectbilimsel süreç becerileri
dc.subjectfen bilimleri dersine yönelik tutum
dc.subjectsosyobilimsel konulara yönelik tutum
dc.subjectortaokul öğrencileri
dc.subjectfen defterleri
dc.subjectbilim sınıfına yönelik imaj
dc.titleBilim Uygulamaları Dersi için FETEMM Merkezli Bir Öğretim Programı Önerisi ve Etkililiğitr_TR
dc.typeinfo:eu-repo/semantics/doctoralThesistr_TR
dc.description.ozetAraştırmanın amacı, Demirel program geliştirme modeline göre tasarlanan ve bilim uygulamaları dersinde uygulanan FeTeMM merkezli öğretim programının; yedinci sınıf öğrencilerinin bilimsel süreç becerileri, fen bilimleri dersine karşı tutumları, sosyobilimsel konulara yönelik tutumları üzerindeki etkilerini, FeTeMM etkinliklerinin uygulandığı bir sınıf ortamı oluşturma üzerindeki etkilerini ve programın kullanımı ve etkililiğine ilişkin öğrenci algılarını tespit etmektir. Araştırma, Ankara ili, Sincan ilçesi, Melikşah Ortaokulu’ndaki 78 öğrenci ile 2016-2017 eğitim öğretim yılı bahar döneminde, FeTeMM merkezli bir öğretim programının uygulandığı 19 haftalık model çerçevesinde yapılmıştır. Araştırmada, nitel ve nicel yaklaşımların birlikte kullanıldığı karma yöntem araştırmasına ait iç içe desen kullanılmıştır. Araştırmanın nicel veri toplama araçlarını TIMMS ve PISA sorularından seçilerek geliştirilen Bilimsel Süreç Becerileri Testi (BSBT), Fen Bilimleri Dersi Tutum Ölçeği (FBDTÖ) ve Sosyobilimsel Konulara Yönelik Tutum Ölçeği (SKYTÖ) oluşturmaktadır. Araştırmanın nitel veri toplama araçlarını ise sunuş gözlem formu, fen defterleri, bilim sınıfı imaj çalışmaları ve öğrencilerle yapılan yarı yapılandırılmış görüşmeler oluşturmaktadır. Ön testlerin uygulanmasından sonra deney grubunda, FeTeMM merkezli bir öğretim programı çerçevesinde hazırlanan etkinlikler, kontrol grubunda ise MEB tarafından bilim uygulamaları dersi yedinci sınıf düzeyi için belirlenen kazanımlara yönelik uygulamalar bir dönem boyunca uygulanmıştır. Dönem sonunda her iki gruba da BSBT, SKYTÖ ve FBDTÖ son test olarak uygulanmıştır. Araştırmada elde edilen nicel veriler t-testi; görüşme, gözlem ve dokümanlara ait nitel veriler betimsel analiz ve içerik analizi tekniği, imaj çalışmaları verileri ise ki kare analiz tekniğiyle çözümlenmiştir. Uygulama sonrasında bilimsel süreç becerileri ve sosyobilimsel konulara yönelik tutum açısından deney grubu lehine istatistiksel olarak anlamlı bir farklılık olduğu ve bununla birlikte Fen Bilimleri dersine yönelik tutum açısından sınırlı bir etki bıraktığı saptanmıştır. Öğrenci görüşmelerinden, gözlemlerden, doküman analizlerinden ve bilim sınıfı imaj çalışmalarından elde edilen nitel veriler nicel bulguları destekler niteliktedir. Uygulamanın bilimsel süreç becerilerini geliştirdiği, öğrencilerin FeTeMM alanlarına olan motivasyonlarını arttırdığı, sosyobilimsel konulara yönelik tutumlarını olumlu etkilediği sonuçlarına ulaşılmıştır.tr_TR
dc.contributor.departmentİlköğretimtr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster