dc.identifier.citation | Açıl, E. (2015). Ortaokul 3. sınıf öğrencilerin denklem kavramına yönelik soyutlama süreçlerinin incelenmesi: APOS teorisi. (Yayınlanmamış Doktora Tezi). Atatürk Üniversitesi, Eğitim Bilimleri Enstitüsü, Erzurum.
Akkoç, H. (2006). Fonksiyon kavramının çoklu temsillerinin çağrıştırdığı kavram görüntüleri. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 30, 1-10.
Alakoç, Z. (2003). Matematik öğretiminde teknolojik modern öğretim yaklaşımları. The Turkish Online Journal of Educational Technology, 2(1), 43-49.
Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Roa Fuentes, S., Trigueros, M. & Weller, K. (2014). APOS theory: A framework for research and curriculum development in mathematics education. New York, Heidelberg, Dordrecht, London: Springer.
Asiala, M., Dubinsky, E., Cottrill, J. & Schwingendorf, E. K. (1997). The Development of Students’ Graphical Understanding of the Derivative. Journal of Mathematical Behavior, 16(4), 399-431.
Aspinwall, L., Shaw, K. L. and Presmeg, N. C. (1997). Uncontrollable Mental Imagery: Graphical Connections Between a Function and Its Derivative. Educational Studies in Mathematics, 33, 301-317.
Aspinwall, L. & Shaw, K. L. (2002). Representations in Calculus: Two Contrasting Cases. Mathematics Teacher, 95, 434-439.
Baştürk, S., Dönmez, G. (2011). Matematik öğretmen adaylarının limit ve süreklilik konusuyla ilgili kavram yanılgıları. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 5(1), 225-249.
Berry S. J. and Nyman A. M. (2003). Promoting Students’ Graphical Understanding of the Calculus. Journal of Mathematical Behavior, 22, 481–497.
Biber, A. Ç. (2010). Ortaöğretim matematik öğretmen adaylarının tek ve iki değişkenli fonksiyonların limiti ve sürekliliği ile ilgili kavram bilgileri arasındaki ilişkilerin incelenmesi. (Yayınlanmamış Doktora Tezi). Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
Bishop, A. J. (1989). Review of research on visualization in mathematics education. Focus On Learning Problems In Mathematics, 11 (1), 7-16.
Breidenbach, D., Dubinsky, E., Hawks, J. & Nichols, D. (1992). Development of the process conception of function. Educational Studies in Mathematics, 23, 247-285.
Cottrill, J., Dubinsky, E., Nichols, D., Schwinngendorf, K., Thomas, K., & Vidakovic, D. (1996). Understanding the limit concept: Beginning with a coordinated process schema. Journal of mathematical behavior, 15, 167-192.
Çekmez, E. (2013). Dinamik matematik yazılımı kullanımının öğrencilerin türev kavramının geometrik boyutuna ilişkin anlamalarına etkisi. (Yayınlanmamış Doktora Tezi). Karadeniz Teknik Üniversitesi, Eğitim Bilimleri Enstitüsü, Trabzon.
Çetin, İ. (2009). Students’ understanding of limit concept: An APOS perspective. (Yayınlanmamış Doktora Tezi). Orta Doğu Teknik Üniversitesi, Ankara.
Deniz, Ö. (2014). 8. Sınıf öğrencilerinin gerçekçi matematik eğitimi yaklaşımı altında eğim kavramını oluşturma süreçlerinin APOS teorik çerçevesinde incelenmesi. (Yayınlanmamış Yüksek Lisans Tezi). Anadolu Üniversitesi, Eğitim Bilimleri Enstitüsü, Eskişehir.
Denning, P. J. (1983). A nation at risk: the imperative for educational reform. Communications of the ACM, 26(7). 467-478.
Dubinsky, E. (Eds.) (1991). Reflective abstraction in advanced mathematical thinking, Advanced mathematical thinking (pp. 95-123). Dordrecht. The Netherlands: Kluwer.
Dubinsky, E. (1997). Some thoughts on a first course in linear algebra on the college level. In D. Carlson, C. Johnson, D. Lay, D. Porter, A. Watkins, & W. Watkins (Eds.), Resources for teaching linear algebra (MAA Notes, Vol. 42, pp. 85–106). Washington, DC: Mathematical Association of America.
Dubinsky, E., Weller, K. & Arnon, I. (2013). Preservice teachers’ understanding of the relation between a fraction or integer and its decimal expansion: The case of 0.999… and 1. Canadian Journal of Science, Mathematics and Technology Education, 13(3), 232-258.
Dubinsky, E., Weller, K., McDonald, M. & Brown, A. (2005). Some historical issues and paradoxes regarding the concept of infinity: An APOS analysis: Part 1. Educational Studies in Mathematics, 58, 335–359.
Erlandson, D. A., Harris, E. L., Skipper, B., & Allen, S. D. (1993). Doing naturalistic inquiry: A guide to methods. Newbury Park, CA: Sage Publications.
Ferrari, P. L. (2003). Abstraction in mathematics. Philosophical Transactions of the Royal Society of London B, 358, 1225-1230.
Fischbein, E. (1982). Intuition and Proof. For the Learning of Mathematics, 3(2), 9-18.
Fraenkel, J. R., Wallen, N. E., Hyun, H. H. (2012). How to design and evaluate research in education (8th edition). New York: McGraw-Hill Humanities/Social Sciences/Languages.
Ganter, S. L. (2001). Changing calculus: a report on evaluation efforts and national impact from 1988 to 1998. Washington, DC: Mathematical Association of America.
Gleason, M. A. and Hallett, H. D. (1992). The calculus consortium based at harvard university. Focus on Calculus 1, 1-4.
Guzman, M. (2002). The role of visualization in the teaching and learning of mathematical analysis. The Proceedings of the 2nd International Conference on the Teaching of Mathematics, Hersonissos, Crete, Greece.
Hershkowitz, R. (1989). Visualization in geometry: two side of the coin. Focus on learning Problems in Mathematics. 11(1), 61-76.
Hofe, R. V. (1999). Problems with the limit concept - on a case study of a calculus lesson within a computer-based learning environment. In Fresenborg, E. C., Maier, H., Reiss, K., Toerner, G., and Weigand, H. G., editors, Selected Papers from the Annual Conference of Didactics of Mathematics, 1997.
İnan, C. (2006). Matematik öğretiminde oluşturmacı yaklaşım uygulmasının örnekleri. Ziya Gökalp Eğitim Fakültesi Dergisi, 6, 40-50.
Kabael, T. (2011). Tek değişkenli fonksiyonların iki değişkenli fonksiyonlara genellenmesi, fonksiyon makinesi ve APOS. Kuram ve Uygulamada Eğitim Bilimleri, 11(1), 465-499.
Kirk,J. & Miller, M.L. (1986). Reliability and validity in qualitative research. Beverly Hills, Ca.: Sage Publications.
Kleiner, I. (1989). Evolution of the function concept: A brief survey. The College Mathematics Journal, 20(4), 282-300.
LeCompte, M. D. & Goetz, J.P.(1982). Problems of reliability and validity in ethnographic research. Review of Educational Research, 52, 31-60.
Lincoln, Y.S. & Guba, E. G. (1985). Naturalistic inquiry, Beverly Hills: Sage.
Martinez-Planell, R. & Trigueros Gaisman, M. (2012). Students' understanding of the general notion of a function of two variables. Educational Studies in Mathematics, 81, 365-384.
McDonald, M., Mathews, D., & Strobel, K. (Eds.) (2000). Understanding sequences: A tale of two objects. Research in Collegiate mathematics education IV. CBMS issues in mathematics education (Vol.8, pp. 77-102).
Miles, M. B. & Huberman, A.M. (1994). Qualitative data analysis: An expanded sourcebook. (2nd Edition). Calif: SAGE Publications.
Milli Eğitim Bakanlığı (MEB) (1966). Türk Ansiklopedisi. Ankara: Milli Eğitim Basımevi
Nasibov, F. ve Kaçar, A. (2005). Matematik ve matematik eğitimi hakkında. Kastamonu Eğitim Dergisi, 13(2), 339-346.
National Council of Teachers of Mathematics (NCTM) (1989). Curriculum and Evaluation Standards for School Mathematics. [Çevrim-içi: http://www.mathcurriculumcenter.org/PDFS/CCM/summaries/standards_summary.pdf , Erişim Tarihi: 13 Haziran 2017.]
Patton, M. K. (1987). How to use qualitative methods in evaluation. Newbury Park: SAGE publications.
Piaget, J. (1965). The child’s conception of number. New York: W. W. Norton.
Piaget, J. (1971). Biology and knowledge. Chicago: University of Chicago Press.
Piaget, J. (1973). Comments on mathematical education. Developments in mathematical education: Proceedings of the second international congress on mathematical education (pp. 79-87). Cambridge, UK: Cambridge University Press.
Piaget, J. (1985). The equilibration of cognitive structures. Cambridge, MA: Harvard University Press.
Ponte, J. P. (1992). The history of the concept of function and some educational implications. Mathematics Educator, 3(2), 3-8.
Roa-Fuentes, S., & Oktaç, A. (2010). Construccion de una descomposicion genetica: Analisis teorico del concepto transformacion lineal. Revista Latinoamericana de Investigacion en Matematica Educativa, 13(1), 89–112.
Selden, J., Selden, A. and Mason, A. In J. Kaput and E. Dubinsky, (Eds.) (1994). Even good calculus students can’t solve nonroutine problems. Research issues in undergraduate mathematics learning: Preliminary analysis and results. (pp. 19-26). Washington, DC: Mathematical Association of America.
Sierpinska, A. (1994). Understandings in Mathematics. London: Falmer.
Sinan, O. (2007). Fen Bilgisi Öğretmen Adaylarının Proteinler ve Protein Sentezi İle İlgili Kavramsal Anlamaları. (Yayınlanmamış Doktora Tezi), Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Balıkesir.
Steffe, L. P., & Thompson, P. W. In R. Lesh & A. E. Kelly (Eds.), (2000). Teaching experiment methodology: Underlying principles and essential elements. Research design in mathematics and scienc education (pp. 267-307). Hillsdale, NJ: Erlbaum.
Stenger, C., Weller, K., Arnon, I., Dubinsky, E. & Vidakovic, D. (2008). A search for a constructivist approach for understanding the uncountable set P(N). Revisto latinoamericano de Investigacion en Matematicas Educativas, 11(1), 93-126.
Stewart, C. J., Cash, W. B. (1985). Interviewing: Principles and practices (4th edition). Dubuque, Iowa: W.C. Brown Publishers.
Tall, D. (1991). Advanced Mathematical Thinking. Dordrecht: Kluwer Academic Publishers.
Tall, D. (1992). Students’ difficulties in calculus. Plenary presentation in working group 3, ICME, Quebec, Canada, August 1992.
Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151-169.
Trigueros Gaisman, M. & Martinez-Planell, R. (2007). Visualization and abstraction: Geometric representation of function of two-variables. Proceedings of the 29th annual meeting of the North American Chapter of the International Group for the Psychlogy of Mathematics Education, Stateline, NV: University of Nevada, Reno.
Trigueros, M., & Martinez-Planell, R. (2010). Geometrical representations in the learning of two-variable functions. Educational Studies in Mathematics, 73, 3–19.
Trigueros, M., & Oktac¸, A. (2005). La theorie APOS et l’enseignement de l’Algebre Lineaire. Annales de Didactique et de Sciences Cognitives. Revue internationale de didactique des mathematiques (Vol. 10, pp. 157–176). IREM de Strasbourg, Universite Louis Pasteur.
Tzirias, W. (2011). APOS theory as a framework to study the conceptual stages of related rates problems. (Dissertation Masters Thesis). Concordia University.
Vinner, S. & Dreyfus, T. (1989). Images and definitions for the concept of function. Journal for Research in Mathematics Education, 20(4), 356-366.
Yılmaz, R. (2011). Matematiksel soyutlama ve genelleme süreçlerinde görselleştirme ve rolü. (Yayınlanmamış Doktora Tezi). Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
Weber, E., & Thompson, P. W. (2014). Students' images of two-variable functions and their graphs. Educational Studies in Mathematics, 87(1), 67-85.
Weller, K., Arnon, I., & Dubinsky, D. (2009). Pre-service teachers’ understanding of the relation between a fraction or integer and its decimal expansion. Canadian Journal for Science, Mathematics, and Technology Education, 9(1), 5 – 28.
Weller, K., Arnon, I. & Dubinsky, E. (2011). Preservice teachers’ understanding of the relation between a fraction or integer and its decimal expansion: Strength and stability of belief. Canadian Journal of Science, Mathematics and Technology Education, 11, 129-159.
Yerushalmy, M. (1997). Designing representations: reasoning about functions of two-variables. Journal for Research in Mathematics Education, 28, 431-466.
Yıldırım, A., Şimşek, H. (2013). Sosyal bilimlerde nitel araştırma yöntemleri (9. Baskı). Ankara: Seçkin Yayıncılık.
Yin, R. K. (2003). Case Study Research: Design and Methods (3rd edition). Sage Publications, Thousand Oaks, CA.
Zazkis, R., Dubinsky, E. & Dautermann, J. (1996). Coordinating Visual and Analytic Strategies: A Study of Students’ Understanding of the Group D4. Journal for Research in Mathematics Education, 27, 435-457. | tr_TR |