Özet
Antibodies and antibody fragments are used in the diagnosis, imaging, and target-specific treatments of various diseases such as cancer and viral infections. It also has an important place in combating infectious diseases. Single-chain antibody fragments (scFv), which consist of a flexible peptide fragment and the V portion of a heavy chain linked to the V portion of a light chain, are smaller in size, can be produced more cheaply and easily in bacterial systems, and have a high selectivity against the target antigen, similar to antibodies, and due to their affinity, they have recently become an alternative to full-antibodies. Biopharmaceutical proteins make up nearly half of the global pharmaceutical market. The majority of biopharmaceutical products include monoclonal antibody and antibody fragments. It is known that Escherichia coli, which is widely used in recombinant protein production, reduces production costs, increases productivity and is easier to manipulate compared to other microorganisms. There is a lack of study in literature in order to determine the optimum production site of anti-HER2 scFv containing disulfide bonds, in which the productions in three different compartments of E. coli are coexisting, comparing using different signal peptides and strains, via different pathways specific to these regions. In the thesis study, productions of selective anti-HER2 scFv against human epidermal growth receptor 2 (HER2), which occur in excessive amounts in breast cancer cells, were compared for three different compartments, periplasmic, cytoplasmic and extracellular. The commercial and genetically modified E. coli SHuffle T7 Express strain was used for the cytoplasmic production. Designs including DsbA and MBP signal peptides were used for periplasmic region, while the design with the YebF signal peptide was used for extracellular secretion. It has been shown in the study that the scFvs purified at a ratio of >99% after production are in soluble and active form. The most suitable temperature for production was determined by screening the induction temperature. After optimizing the production process, scFvs were compared in different features. Periplasmic, cytoplasmic, and extracellular samples whose specificities were evaluated were correctly bound to antigen in the in vitro assays. While the production yield of the cytoplasmic sample was 6.2 mg/L, the yield of periplasmic production with spMBP was 5.1 mg/L and the extracellular production efficiency was 2.5 mg/L. In addition, when the specific heat and melting temperatures (Tm) were examined, it is concluded that the cytoplasmic sample is thermally more stable. Overall, this study has been a guide for the process of reducing the production costs of recombinant proteins that play a role in medical diagnosis and treatment. In particular, the production of anti-HER2 scFv in active and soluble form, its cloning in E. coli using complex protein-specific methods and strains, and evaluation of its different aspects will make an important contribution to the literature.
Künye
[1] V.J. Bruce, A.N. Ta, B.R. McNaughton, Minimalist Antibodies and Mimetics: An Update and Recent Applications, Chembiochem 17(20) (2016) 1892-1899.
[2] K.J. Jeong, S.H. Jang, N. Velmurugan, Recombinant antibodies: Engineering and production in yeast and bacterial hosts, Biotechnology Journal 6(1) (2011) 16-27.
[3] R. O'Kennedy, S. Fitzgerald, C. Murphy, Don't blame it all on antibodies - The need for exhaustive characterisation, appropriate handling, and addressing the issues that affect specificity, Trac-Trends in Analytical Chemistry 89 (2017) 53-59.
[4] R.S. Fu, L. Carroll, G. Yahioglu, E.O. Aboagye, P.W. Miller, Antibody Fragment and Affibody ImmunoPET Imaging Agents: Radiolabelling Strategies and Applications, Chemmedchem 13(23) (2018) 2466-2478.
[5] H. Kabayama, M. Takeuchi, N. Tokushige, S. Muramatsu, M. Kabayama, M. Fukuda, Y. Yamada, K. Mikoshiba, An ultra-stable cytoplasmic antibody engineered for in vivo applications, Nature Communications 11(1) (2020).
[6] A. Liu, Y. Ye, W. Chen, X. Wang, F. Chen, Expression of V(H)-linker-V(L) orientation-dependent single-chain Fv antibody fragment derived from hybridoma 2E6 against aflatoxin B1 in Escherichia coli, J Ind Microbiol Biotechnol 42(2) (2015) 255-62.
[7] R.Z. Wang, S.S. Xiang, Y.J. Feng, S. Srinivas, Y.H. Zhang, M.S. Lin, S.H. Wang, Engineering production of functional scFv antibody in E. coli by co-expressing the molecule chaperone Skp, Frontiers in Cellular and Infection Microbiology 3 (2013).
[8] T. Yokota, D.E. Milenic, M. Whitlow, J. Schlom, Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms, Cancer Res 52(12) (1992) 3402-8.
[9] R.H. Engel, V.G. Kaklamani, HER2-Positive Breast Cancer, Drugs 67(9) (2007) 1329-1341.
[10] S. Shak, Overview of the trastuzumab (Herceptin) anti-HER2 monoclonal antibody clinical program in HER2-overexpressing metastatic breast cancer. Herceptin Multinational Investigator Study Group, Semin Oncol 26(4 Suppl 12) (1999) 71-7.
[11] C. Sheridan, FDA approves pertuzumab, Nature Biotechnology 30(7) (2012) 570-570.
[12] D.B. Kirpotin, D.C. Drummond, Y. Shao, M.R. Shalaby, K. Hong, U.B. Nielsen, J.D. Marks, C.C. Benz, J.W. Park, Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models, Cancer Res 66(13) (2006) 6732-40.
[13] F. Chen, K. Ma, B. Madajewski, L. Zhuang, L. Zhang, K. Rickert, M. Marelli, B. Yoo, M.Z. Turker, M. Overholtzer, T.P. Quinn, M. Gonen, P. Zanzonico, A. Tuesca, M.A. Bowen, L. Norton, J.A. Subramony, U. Wiesner, M.S. Bradbury, Ultrasmall targeted nanoparticles with engineered antibody fragments for imaging detection of HER2-overexpressing breast cancer, Nature Communications 9 (2018).
[14] M. Colombo, F. Corsi, D. Foschi, E. Mazzantini, S. Mazzucchelli, C. Morasso, E. Occhipinti, L. Polito, D. Prosperi, S. Ronchi, P. Verderio, HER2 targeting as a two-sided strategy for breast cancer diagnosis and treatment: Outlook and recent implications in nanomedical approaches, Pharmacological Research 62(2) (2010) 150-165.
[15] A. Saeed, R.Z. Wang, S.M. Ling, S.H. Wang, Antibody Engineering for Pursuing a Healthier Future, Frontiers in Microbiology 8 (2017).
[16] V. Joosten, C. Lokman, C. van den Hondel, P.J. Punt, The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi, Microbial Cell Factories 2 (2003).
[17] A. Bates, C.A. Power, David vs. Goliath: The Structure, Function, and Clinical Prospects of Antibody Fragments, Antibodies 8(2) (2019).
[18] N.E. Weisser, J.C. Hall, Applications of single-chain variable fragment antibodies in therapeutics and diagnostics, Biotechnol Adv 27(4) (2009) 502-20.
[19] V. Akbari, H.M. Sadeghi, A. Jafarian-Dehkordi, D. Abedi, C.P. Chou, Improved biological activity of a single chain antibody fragment against human epidermal growth factor receptor 2 (HER2) expressed in the periplasm of Escherichia coli, Protein expression and purification 116 (2015) 66-74.
[20] A. Gaciarz, J. Veijola, Y. Uchida, M.J. Saaranen, C. Wang, S. Hörkkö, L.W. Ruddock, Systematic screening of soluble expression of antibody fragments in the cytoplasm of E. coli, Microb Cell Fact 15 (2016) 22.
[21] I. Kocer, E.C. Cox, M.P. DeLisa, E. Celik, Effects of variable domain orientation on anti-HER2 single-chain variable fragment antibody expressed in the Escherichia coli cytoplasm, Biotechnology Progress 37(2) (2021).
[22] J. Lobstein, C.A. Emrich, C. Jeans, M. Faulkner, P. Riggs, M. Berkmen, SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm, Microb Cell Fact 11 (2012) 56.
[23] G. Ren, N. Ke, M. Berkmen, Use of the SHuffle Strains in Production of Proteins, Current protocols in protein science 85 (2016) 5.26.1-5.26.21.
[24] S.H. Yoon, S.K. Kim, J.F. Kim, Secretory production of recombinant proteins in Escherichia coli, Recent Pat Biotechnol 4(1) (2010) 23-9.
[25] C.M. Cheng, S.C. Tzou, Y.H. Zhuang, C.C. Huang, C.H. Kao, K.W. Liao, T.C. Cheng, C.H. Chuang, Y.C. Hsieh, M.H. Tai, T.L. Cheng, Functional Production of a Soluble and Secreted Single-Chain Antibody by a Bacterial Secretion System, Plos One 9(5) (2014).
[26] E. Maverakis, K. Kim, M. Shimoda, M.E. Gershwin, F. Patel, R. Wilken, S. Raychaudhuri, L.R. Ruhaak, C.B. Lebrilla, Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: A critical review, Journal of Autoimmunity 57 (2015) 1-13.
[27] P.T. Charles A. Janeway Jr, Mark Walport, Mark J. Shlomchik et al. , Immunobiology, 5th ed.2001.
[28] M. Reth, Matching cellular dimensions with molecular sizes (vol 14, pg 765, 2013), Nature Immunology 15(2) (2014) 205-205.
[29] P.J. Conroy, S. Hearty, P. Leonard, R.J. O'Kennedy, Antibody production, design and use for biosensor-based applications, Seminars in Cell & Developmental Biology 20(1) (2009) 10-26.
[30] J.M. Woof, D.R. Burton, Human antibody - Fc receptor interactions illuminated by crystal structures, Nature Reviews Immunology 4(2) (2004) 89-99.
[31] G. Vidarsson, G. Dekkers, T. Rispens, IgG subclasses and allotypes: from structure to effector functions, Frontiers in Immunology 5 (2014).
[32] M.K. Mert Selimoğlu, Gürler Akpınar, Aynur Karadenizli, Monoklonal Antikor Teknolojisi’nin Dünü, Bugünü Ve Geleceği, Journal of Health Sciences of Kocaeli University Vol.2, No.1, pp. 6-14 (2016).
[33] R.M. Lu, Y.C. Hwang, I.J. Liu, C.C. Lee, H.Z. Tsai, H.J. Li, H.C. Wu, Development of therapeutic antibodies for the treatment of diseases, Journal of biomedical science 27(1) (2020).
[34] M. Arbabi-Ghahroudi, Camelid Single-Domain Antibodies: Historical Perspective and Future Outlook, Frontiers in Immunology 8 (2017).
[35] K. Kurosawa, W. Lin, K. Ohta, Chimeric Antibodies, in: M. Steinitz (Ed.), Human Monoclonal Antibodies: Methods and Protocols 2014, pp. 139-148.
[36] G.P. Smith, Filamentous Fusion Phage - Novel Expression Vectors That Display Cloned Antigens On The Virion Surface, Science 228(4705) (1985) 1315-1317.
[37] Y. Asaadi, F.F. Jouneghani, S. Janani, F. Rahbarizadeh, A comprehensive comparison between camelid nanobodies and single chain variable fragments, Biomarker Research 9(1) (2021).
[38] Z.A. Ahmad, S.K. Yeap, A.M. Ali, W.Y. Ho, N.B.M. Alitheen, M. Hamid, scFv Antibody: Principles and Clinical Application, Clinical & developmental immunology (2012).
[39] A. Todorovska, R.C. Roovers, O. Dolezal, A.A. Kortt, H.R. Hoogenboom, P.J. Hudson, Design and application of diabodies, triabodies and tetrabodies for cancer targeting, Journal of Immunological Methods 248(1-2) (2001) 47-66.
[40] M. Whitlow, B.A. Bell, S.L. Feng, D. Filpula, K.D. Hardman, S.L. Hubert, M.L. Rollence, J.F. Wood, M.E. Schott, D.E. Milenic, T. Yokota, J. Schlom, An Improved Lınker For Single-Chain Fv With Reduced Aggregation And Enhanced Proteolytic Stability, Protein Engineering 6(8) (1993) 989-995.
[41] P.K. Satheeshkumar, Expression of Single Chain Variable Fragment (scFv) Molecules in Plants: A Comprehensive Update, Molecular Biotechnology 62(3) (2020) 151-167.
[42] Z. Li, B.F. Krippendorff, S. Sharma, A.C. Walz, T. Lave, D.K. Shah, Influence of molecular size on tissue distribution of antibody fragments, Mabs 8(1) (2016) 113-119.
[43] P. Holliger, P.J. Hudson, Engineered antibody fragments and the rise of single domains, Nature Biotechnology 23(9) (2005) 1126-1136.
[44] K.J. Arlotta, S.C. Owen, Antibody and antibody derivatives as cancer therapeutics, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 11(5) (2019) e1556.
[45] J. Kaur, A. Kumar, J. Kaur, Strategies for optimization of heterologous protein expression in E-coli: Roadblocks and reinforcements, International Journal of Biological Macromolecules 106 (2018) 803-822.
[46] A. Sandomenico, J.P. Sivaccumar, M. Ruvo, Evolution ofEscherichia coliExpression System in Producing Antibody Recombinant Fragments, International Journal of Molecular Sciences 21(17) (2020).
[47] G.L. Rosano, E.S. Morales, E.A. Ceccarelli, New tools for recombinant protein production in Escherichia coli: A 5-year update, Protein Science 28(8) (2019) 1412-1422.
[48] G.J. Gopal, A. Kumar, Strategies for the Production of Recombinant Protein in Escherichia coli, Protein Journal 32(6) (2013) 419-425.
[49] G.L. Rosano, E.A. Ceccarelli, Recombinant protein expression in Escherichia coli: advances and challenges, Frontiers in Microbiology 5 (2014).
[50] B. Jia, C.O. Jeon, High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives, Open Biology 6(8) (2016).
[51] D.F. Gao, S.J. Wang, H.R. Li, H.L. Yu, Q.S. Qi, Identification of a heterologous cellulase and its N-terminus that can guide recombinant proteins out of Escherichia coli, Microbial Cell Factories 14 (2015).
[52] M. Ahmadzadeh, F. Farshdari, L. Nematollahi, M. Behdani, E. Mohit, Anti-HER2 scFv Expression in Escherichia coli SHuffle (R) T7 Express Cells: Effects on Solubility and Biological Activity, Molecular Biotechnology 62(1) (2020) 18-30.
[53] M. Ahmadzadeh, F. Farshdari, M. Behdani, L. Nematollahi, E. Mohit, Cloning, Expression and One-Step Purification of a Novel IP-10-(anti-HER2 scFv) Fusion Protein inEscherichia coli, International Journal of Peptide Research and Therapeutics 27(1) (2021) 433-446.
[54] A. Sarker, A.S. Rathore, R.D. Gupta, Evaluation of scFv protein recovery from E-coli by in vitro refolding and mild solubilization process, Microbial Cell Factories 18 (2019).
[55] S. Schlegel, E. Rujas, A.J. Ytterberg, R.A. Zubarev, J. Luirink, J.W. de Gier, Optimizing heterologous protein production in the periplasm of E. coli by regulating gene expression levels, Microbial Cell Factories 12 (2013).
[56] A. Malik, Protein fusion tags for efficient expression and purification of recombinant proteins in the periplasmic space of E. coli, 3 Biotech 6 (2016).
[57] A. Mesgari-Shadi, M.H. Sarrafzadeh, Osmotic conditions could promote scFv antibody production in the Escherichia coli HB2151, Bioimpacts 7(3) (2017) 199-206.
[58] C.J. Huang, H. Lin, X.M. Yang, Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements, Journal of Industrial Microbiology & Biotechnology 39(3) (2012) 383-399.
[59] L.A. Fernandez, I. Sola, L. Enjuanes, V. de Lorenzo, Specific secretion of active single-chain Fv antibodies into the supernatants of Escherichia coli cultures by use of the hemolysin system, Applied and Environmental Microbiology 66(11) (2000) 5024-+.
[60] J.L. Baker, E. Celik, M.P. DeLisa, Expanding the glycoengineering toolbox: the rise of bacterial N-linked protein glycosylation, Trends in Biotechnology 31(5) (2013) 49-59.
[61] O. Pines, M. Inouye, Expression and secretion of proteins in E-coli, Molecular Biotechnology 12(1) (1999) 25-34.
[62] C. Goemans, K. Denoncin, J.F. Collet, Folding mechanisms of periplasmic proteins, Biochimica Et Biophysica Acta-Molecular Cell Research 1843(8) (2014) 1517-1528.
[63] Uniprot, https://www.uniprot.org/help/signal, 2022. (Accessed 24.05.2022 2022).
[64] NCBI, BLAST, https://blast.ncbi.nlm.nih.gov/Blast.cgi, 2022. (Accessed 24/04/2022 2022).
[65] D.H. Tech, Signal P-6.0, https://services.healthtech.dtu.dk/service.php?SignalP-6.0, 2022. (Accessed 25/04/2022 2022).
[66] L. LABORATORIES, SoluProt 1.0, https://loschmidt.chemi.muni.cz/soluprot/. (Accessed 25/04/2022 2022).
[67] T. Baumgarten, A.J. Ytterberg, R.A. Zubarev, J.W. de Gier, Optimizing Recombinant Protein Production in the Escherichia coli Periplasm Alleviates Stress, Applied and Environmental Microbiology 84(12) (2018).
[68] NIH, GenBank, https://www.ncbi.nlm.nih.gov/genbank/. (Accessed 25/04/2022 2022).
[69] H. Sonoda, Y. Kumada, T. Katsuda, H. Yamaji, Effects of cytoplasmic and periplasmic chaperones on secretory production of single-chain Fv antibody in Escherichia coli, Journal of Bioscience and Bioengineering 111(4) (2011) 465-470.
[70] A. Gaciarz, N.K. Khatri, M.L. Velez-Suberbie, M.J. Saaranen, Y. Uchida, E. Keshavarz-Moore, L.W. Ruddock, Efficient soluble expression of disulfide bonded proteins in the cytoplasm of Escherichia coli in fed-batch fermentations on chemically defined minimal media, Microbial Cell Factories 16 (2017).
[71] A.P. Liu, Y. Ye, W.F. Chen, X.H. Wang, F.S. Chen, Expression of V-H-linker-V-L orientation-dependent single-chain Fv antibody fragment derived from hybridoma 2E6 against aflatoxin B-1 in Escherichia coli, Journal of Industrial Microbiology & Biotechnology 42(2) (2015) 255-262.
[72] T. Yokota, D.E. Milenic, M. Whitlow, J. Schlom, Rapid Tumor Penetration Of A Single-Chain Fv And Comparison With Other Immunoglobulin Forms, Cancer Research 52(12) (1992) 3402-3408.
[73] A. Karyolaimos, H. Ampah-Korsah, T. Hillenaar, A. Mestre Borras, K.M. Dolata, S. Sievers, K. Riedel, R. Daniels, J.W. de Gier, Enhancing Recombinant Protein Yields in the E. coli Periplasm by Combining Signal Peptide and Production Rate Screening, Front Microbiol 10 (2019) 1511.
[74] K. Mirzadeh, P.J. Shilling, R. Elfageih, A.J. Cumming, H.L. Cui, M. Rennig, M.H.H. Norholm, D.O. Daley, Increased production of periplasmic proteins in Escherichia coli by directed evolution of the translation initiation region, Microbial Cell Factories 19(1) (2020).
[75] K.S. Rostinawati T1*, Yusuf M2, Gaffar S2 and Subroto, T2, Construction and Expression of Synthetic-gene encoding anti-HER2 scFv Fused with pelB in Escherichia coli BL21 (DE3), Journal of Pharmaceutical Sciences and Research Vol. 9(11) (2017).
[76] K.S. Dewi, D.S. Retnoningrum, C. Riani, A.M. Fuad, Construction and Periplasmic Expression of the Anti-EGFRvIII ScFv Antibody Gene in Escherichia coli, Scientia Pharmaceutica 84(1) (2016) 141-152.
[77] K.I. Na, S.J. Kim, D.S. Choi, W.K. Min, S.G. Kim, J.H. Seo, Extracellular production of functional single-chain variable fragment against aflatoxin B-1 using Escherichia coli, Letters in Applied Microbiology 68(3) (2019) 241-247.
[78] Z. Yildirim, E. Celik, Periplasmic and extracellular production of cellulase from recombinant Escherichia coli cells, Journal of Chemical Technology and Biotechnology 92(2) (2017) 319-324.
[79] Z.Y. Chen, J. Cao, L. Xie, X.F. Li, Z.H. Yu, W.Y. Tong, Construction of leaky strains and extracellular production of exogenous proteins in recombinant Escherichia coli, Microbial biotechnology 7(4) (2014) 360-70.
[80] Z.G. Qian, X.X. Xia, J.H. Choi, S.Y. Lee, Proteome-based identification of fusion partner for high-level extracellular production of recombinant proteins in Escherichia coli, Biotechnol Bioeng 101(3) (2008) 587-601.
[81] G. Zhang, S. Brokx, J.H. Weiner, Extracellular accumulation of recombinant proteins fused to the carrier protein YebF in Escherichia coli, Nature Biotechnology 24(1) (2006) 100-104.
[82] A. Sandomenico, J.P. Sivaccumar, M. Ruvo, Evolution ofEscherichia coliExpression System in Producing Antibody Recombinant Fragments, Int. J. Mol. Sci. 21(17) (2020) 39.
[83] C. Huang, Jr., H. Lin, X. Yang, Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements, Journal of Industrial Microbiology & Biotechnology 39(3) (2012) 383-399.
[84] K.J. Jeong, S.H. Jang, N. Velmurugan, Recombinant antibodies: engineering and production in yeast and bacterial hosts, Biotechnol J 6(1) (2011) 16-27.
[85] S.K. Gupta, P. Shukla, Microbial platform technology for recombinant antibody fragment production: A review, Critical Reviews in Microbiology 43(1) (2017) 31-42.
[86] S.S.J. Leong, W.N. Chen, Preparing recombinant single chain antibodies, Chemical Engineering Science 63(6) (2008) 1401-1414.
[87] M. Liu, B. Wang, F. Wang, Z. Yang, D. Gao, C. Zhang, L. Ma, X. Yu, Soluble expression of single-chain variable fragment (scFv) in Escherichia coli using superfolder green fluorescent protein as fusion partner, Applied microbiology and biotechnology 103(15) (2019) 6071-6079.
[88] D. Esposito, D.K. Chatterjee, Enhancement of soluble protein expression through the use of fusion tags, Curr Opin Biotechnol 17(4) (2006) 353-8.
[89] P.H. Bessette, F. Aslund, J. Beckwith, G. Georgiou, Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm, Proceedings of the National Academy of Sciences of the United States of America 96(24) (1999) 13703-8.
[90] A. Gaciarz, J. Veijola, Y. Uchida, M.J. Saaranen, C. Wang, S. Hörkkö, L.W. Ruddock, Systematic screening of soluble expression ofantibody fragments in the cytoplasm of E. coli, Microbial Cell Factories 15(1) (2016) 22.
[91] H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA: a cancer journal for clinicians 71(3) (2021) 209-249.
[92] C.S. Wynn, S.C. Tang, Anti-HER2 therapy in metastatic breast cancer: many choices and future directions, Cancer and Metastasis Reviews 41(1) (2022) 193-209.
[93] G. Valabrega, F. Montemurro, M. Aglietta, Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer, Annals of Oncology 18(6) (2007) 977-984.
[94] D. Zahavi, L. Weiner, Monoclonal Antibodies in Cancer Therapy, Antibodies 9(3) (2020).
[95] L.M. Lin, L. Li, C.H. Zhou, J. Li, J.Y. Liu, R. Shu, B. Dong, Q. Li, Z. Wang, A HER2 bispecific antibody can be efficiently expressed in Escherichia coli with potent cytotoxicity, Oncology Letters 16(1) (2018) 1259-1266.
[96] M. Ueda, H. Hisada, T. Temma, Y. Shimizu, H. Kimura, M. Ono, Y. Nakamoto, K. Togashi, H. Saji, Gallium-68-Labeled Anti-HER2 Single-Chain Fv Fragment: Development and In Vivo Monitoring of HER2 Expression, Molecular Imaging and Biology 17(1) (2015) 102-110.
[97] F. Nejatollahi, M. Jaberipour, M. Asgharpour, Triple blockade of HER2 by a cocktail of anti-HER2 scFv antibodies induces high antiproliferative effects in breast cancer cells, Tumor Biology 35(8) (2014) 7887-7895.
[98] S. Dou, X.Z. Yang, M.H. Xiong, C.Y. Sun, Y.D. Yao, Y.H. Zhu, J. Wang, ScFv-Decorated PEG-PLA-Based Nanoparticles for Enhanced siRNA Delivery to Her2(+) Breast Cancer, Advanced Healthcare Materials 3(11) (2014) 1792-1803.
[99] F. Farshdari, M. Ahmadzadeh, L. Nematollahi, E. Mohit, The improvement of anti-HER2 scFv soluble expression in Escherichia coli, Brazilian Journal of Pharmaceutical Sciences 56 (2020).
[100] Z. Yıldırım, E. Çelik, Periplasmic and extracellular production of cellulase from recombinant Escherichia coli cells, 92(2) (2017) 319-324.
[101] K.A.J. Nina Irwin, Molecular Clonning Labrotory Manual 3th Editin, 2001
[102] A.C. Fisher, C.H. Haitjema, C. Guarino, E. Çelik, C.E. Endicott, C.A. Reading, J.H. Merritt, A.C. Ptak, S. Zhang, M.P. DeLisa, Production of secretory and extracellular N-linked glycoproteins in Escherichia coli, Appl Environ Microbiol 77(3) (2011) 871-81.
[103] M.S. Green, J., Molecular Clonning A Laboratory Manual (4th Edition), 2012.
[104] K. Salimi, D.D. Usta, İ. Koçer, E. Çelik, A. Tuncel, Highly selective magnetic affinity purification of histidine-tagged proteins by Ni2+ carrying monodisperse composite microspheres, RSC Advances 7(14) (2017) 8718-8726.
[105] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem 72 (1976) 248-54.
[106] U.K. Laemmli, Cleavage of structural proteins during assembly of head of bacteriophage-t4, Nature 227(5259) (1970) 680-&.
[107] Ç. Kip, R.B. Tosun, S. Alpaslan, İ. Koçer, E. Çelik, A. Tuncel, Ni(II)-decorated porous titania microspheres as a stationary phase for column chromatography applications: Highly selective purification of hemoglobin from human blood, Talanta 200 (2019) 100-106.
[108] K. Salimi, D.D. Usta, İ. Koçer, E. Çelik, A. Tuncel, Protein A and protein A/G coupled magnetic SiO(2) microspheres for affinity purification of immunoglobulin G, Int J Biol Macromol 111 (2018) 178-185.
[109] J.F.S. Russell, Molecular Cloning: A Laboratory Manual, USA: Cold Spring Harbor. 2100. (2001).
[110] T. Tadokoro, M.L. Jahan, Y. Ito, M. Tahara, S. Chen, A. Imai, N. Sugimura, K. Yoshida, M. Saito, T. Ose, T. Hashiguchi, M. Takeda, H. Fukuhara, K. Maenaka, Biophysical characterization and single-chain Fv construction of a neutralizing antibody to measles virus, Febs j 287(1) (2020) 145-159.