Abstract
This dissertation is about the design and analysis of passive microwave circuits on flexible substrates. The work is divided into three parts material characterization, design, and fabrication. Two types of textile samples cotton, jeans, and two types of synthesized mold silicone PDMS, and AK-Sil1310T are selected for analysis. The dielectric properties of cotton, jeans, PDMS, and AK-Sil1310T are determined using a waveguide and modified ring resonator for a 1-12 GHz frequency band. The waveguide setup consists of X-band (8.2-12.5 GHz) rectangular waveguides, a vector network analyzer, the coaxial cables, and the N-type coaxial to waveguide converters. The scattering parameters of test materials are measured through a waveguide setup whereas the Nicolson-Ross-Wier algorithm is used to extract the dielectric properties from measured scattering parameters. To determine material properties using the resonant method two microwave structures microstrip transmission line a and microstrip ring resonator are realized. The dielectric properties obtained through both methods are significantly matched.
The different conductive materials such as conductive ink, conductive textile, and conductive yarn are investigated to compare their performance when used in the fabrication of circuit elements on textiles. The fabrication techniques including screen printing, Physical Vapor deposition, sticking, and stitching are also examined.
In the design phase, an X-band reflectarray with a rectangular patch element is simulated using Ansys HFSS electromagnetic simulation software. The phase range corresponding to patch dimension for single-layer and 2-layer unit cells is obtained. The single-layer unit cell has a phase range of around 330o but has steeper phase variation whereas the 2-layer unit cell has more the 300o has gradual phase variation Based on fabrication error tolerance and bandwidth criteria 2-layer unit cell is used to design complete reflectarray. The simulations of reflectarray for center feed configuration having 15x15 elements and offset feed configuration having 17x17 elements are carried out by using the ANSYS HFSS simulation tool. The radiation patterns, gains, and efficiencies are calculated for both antennas. The gain for center feed configuration is around 21 dB and the estimated efficiency is around 43%, similarly the gain for offset feed configuration is around 23 dB while the estimated efficiency is around 45%.
Both designs are fabricated through computerized embroidery technique using silver-coated conductive thread while the ground plane is made using conductive textile. The fabricated design was tested with the help of a wooden structure built in the lab and compared with simulations.
xmlui.mirage2.itemSummaryView.Collections
xmlui.dri2xhtml.METS-1.0.item-citation
[1] Flexible Electronics Market Size Worth Around US$ 61 Bn by 2030. Precedence Research published on December 16 2021, Available on: https://www.globenewswire.com/news-release/2021/12/16/2353637/0/en/Flexible-Electronics-Market-Size-Worth-Around-US-61-Bn-by-2030.html.
[2] P. Salonen, J. Kim, and Y. R. Samii. "Dual-band E-shaped patch wearable textile antenna." Antennas and Propagation Society International Symposium, vol. 1. IEEE, 2005.
[3] A. Rida, L. Yang, R. Vyas, and M. M. Tentzeris, “Conductive inkjet-printed antennas on flexible low-cost paper-based substrates for RFID and WSN applications,” IEEE Antennas and Propagation Magazine, vol. 51, no. 3, pp. 3-23, 2009.
[4] D. E. Anagnostou, A. A. Gheethan, A. K. Amert, and K. W. Whites, “A direct-write printed antenna on paper-based organic substrate for flexible displays and WLAN applications,” Journal of Display Technology, vol. 6, no.11, pp. 558-564, 2010.
[5] M. Kubo, X. Li, C. Kim, M. Hashimoto, B. J. Wiley, D. Ham, and G. M. Whitesides, “Stretchable microfluidic radiofrequency antennas”. Advanced Materials, vol. 22, no. 25, pp. 2749-2752, 2010.
[6] X. Huang, T. Leng, K. H. Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics”. 2D Materials, vol. 3, no. 2, pp. 025021, 2016.
[7] K. Futera, K. Kielbasinski, A. Młozniak, and M. Jakubowska, "Inkjet printed microwave circuits on flexible substrates using heterophase graphene-based inks." Soldering & Surface Mount Technology, vol. 27, no .3, pp.112-114, 2015.
[8] H. R. Khaleel, H. M. Al-Rizzo, D. G. Rucker, and Y. Al-Naiemy, "Flexible printed monopole antennas for WLAN applications." Antennas and Propagation (APSURSI), 2011 IEEE International Symposium, pp. 1334-1337, 2011.
[9] X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, and Z. Hu “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Scientific Reports, vol. 5, no. 1, pp. 1-8, 2015.
[10] S. Asif, A. Iftikhar, S.Z. Sajal, B. Braaten, and M. S. Khan, “On using graphene-based conductors as transmission lines for feed networks in printed antenna arrays”. 2015 IEEE International Conference on Electro/Information Technology (EIT), pp. 681-683. IEEE 2015.
[11] Z. Ma, Y. H. Jung, J. H. Seo, J. Lee, S. J. Cho, T. H Chang, and W. Zhou, “Radio-frequency flexible and stretchable electronics (Key note),” in 2016 China Semiconductor Technology International Conference (CSTIC), pp. 1-4. IEEE March 2016.
[12] W. Zhu, S. Park, M. N. Yogeesh, and D. Akinwande, “Advancements in 2D flexible nanoelectronics: From material perspectives to RF applications”. Flexible and Printed Electronics, vol. 2, no. 4, pp. 043001, 2017.
[13] Y. Mahe, A. Chousseaud, M. Brunet, and B. Froppier, “New flexible medical compact antenna: design and analysis”. International Journal of Antennas and Propagation, 2012.
[14] S. Shrestha, M. Agarwal, P. Ghane, and K. Varahramyan, “Flexible microstrip antenna for skin contact application,” International Journal of Antennas and Propagation, 2012.
[15] K. Short, and D. V. Buren., Printable Spacecraft: Flexible Electronic Platforms for NASA Missions. Phase One. 2012.
[16] H. R. Khaleel, H. M. Al-Rizzo, and A. I. Abbos, "Design, fabrication, and testing of flexible antennas." in Advancement in Microstrip Antennas with Recent Applications, A. Kishk, Ed. InTech, Coratia, pp. 363-383, 2013.
[17] J. G. Hester, S. Kim, J. Bito, T. Le, J. Kimionis, D. Revier, and M. M. Tentzeris, "Additively manufactured nanotechnology and origami-enabled flexible microwave electronics." Proceedings of the IEEE, vol. 103 no. 4, pp. 583-606, 2015.
[18] D. Lawrence, J. Kohler, B. Brolklier T. Claypole, T. BurginKatz, J. Veinot, “Manufacturing Platforms for Printing Organic Circuits.” in Printed Organic and Molecular Electronics, DR Gamota, P. Brazis, K. Kalyansundaram and J. Zhang. ed., Springer, USA pp. 307-318,2004.
[19] N. J. Kirsch, N. A. Vacirca, E. E. Plowman, T. P. Kurzweg, A. K. Fontecchio, and K. R. Dandekar, "Optically transparent conductive polymer RFID meandering dipole antenna," 2009 IEEE International Conference on RFID. IEEE, 2009.
[20] S. Y. Leung, and D.C Lam, "Performance of printed polymer-based RFID antenna on curvilinear surface." IEEE Transactions on Electronics Packaging Manufacturing, vol. 30, no. 3 pp. 200-205, 2007.
[21] S. H. Eom, and S. Lim, "based pattern switchable antenna using inkjet-printing technology." Microwave Conference (APMC), 2015 Asia-Pacific. Vol. 1. IEEE, 2015.
[22] H. Subbaraman, D.T. Pham, X. Xu, M.Y. Chen, A. Hosseini, X. Lu, R.T. Chen, "Inkjet-printed two-dimensional phased-array antenna on a flexible substrate." IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 170-173, 2013.
[23] Y. Li, Z. Zhang, Z. Feng, and H. R. Khaleel, "Fabrication and Measurement Techniques of Wearable and Flexible Antennas." WIT Transactions on State-of-the-art in Science and Engineering, vol. 82, pp. 7-23, 2014.
[24] L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave electronics: measurement and materials characterization. John Wiley & Sons, USA 2004.
[25] D. M. Pozar. "Microwave engineering." Wiley, USA. 2012.
[26] M. S. Venkatesh, and G. S. V. Raghavan. "An overview of dielectric properties measuring techniques." Canadian biosystems engineering, vol. 47 no. 7 pp. 15-30, 2005.
[27] M. T. Khan, and S.M. Ali. "A brief review of measuring techniques for characterization of dielectric materials." International Journal of Information Technology and Electrical Engineering, vol. 1, no .1, 2012.
[28] U. Kaatze. "Measuring the dielectric properties of materials. Ninety-year development from low frequency techniques to broadband spectroscopy and high-frequency imaging." Measurement Science and Technology, vol. 24, no .1, pp. 012005, 2012.
[29] J. W. Stewart, and M. J. Havrilla. "Electromagnetic characterization of a magnetic material using an open-ended waveguide probe and a rigorous full-wave multimode model." Journal of Electromagnetic Waves and Applications, vol. 20, no. 14, pp. 2037-2052, 2006.
[30] R. A. Fenner, E. J. Rothwell, and L. L. Frasch. "A comprehensive analysis of free-space and guided-wave techniques for extracting the permeability and permittivity of materials using reflection-only measurements." Radio Science, vol. 47, no. 01, pp. 1-13, 2012.
[31] A. A. Barba, and M. d’Amore. "Relevance of dielectric properties in microwave assisted processes." in Microwave materials characterization, S. Constanzo, Ed. InTech, Croatia, pp. 91-118, 2012.
[32] F. Costa, M. Borgese, M. Degiorgi, and A. Monorchio, “Electromagnetic Characterization of Materials by Using Transmission/Reflection (T/R) Devices." Electronics, vol. 6, no. 4, pp. 95, 2017.
[33] F. J. F. Gonçalves, A. G. Pinto, R. C. Mesquita, E. J. Silva, and A. Brancaccio, "Free-Space Materials Characterization by Reflection and Transmission Measurements using Frequency-by-Frequency and Multi-Frequency Algorithms." Electronics, vol. 7, no.10, pp. 260, 2018.
[34] C. P. L Rubinger, and L. C. Costa, "Building a resonant cavity for the measurement of microwave dielectric permittivity of high loss materials." Microwave and Optical Technology Letters, vol. 49, no. 7, pp. 1687-1690, 2007.
[35] H. C. García, "New methods for determining the complex permittivity of different glucose concentrations by waveguide and antenna measurements at v-band." Master thesis, King's College London, 2013.
[36] Y. H. Chou, M. J. Jeng, Y. H. Lee, and Y. G. Jan, "Measurement of RF PCB dielectric properties and losses." Progress in Electromagnetics Research, vol. 4, pp. 139-148, 2008.
[37] K. P. Ray, K. Nirmala, and S. Hosabettu. "Simple accurate method to determine dielectric constant of the substrate." 2009 Applied Electromagnetics Conference (AEMC), IEEE, 2009.
[38] S. B. Cohn, and K. C. Kelly, “Microwave measurement of high-dielectric-constant materials”. IEEE Transactions on Microwave Theory and Techniques, vol. 14, no. 9, pp. 406-410, 1966.
[39] J. Krupka, R. G. Geyer, Krupka, M. Kuhn, and J. Hinken, “Dielectric Properties of Single Crystals of Al2O3, LaAlO3, NdGaO3, SrTiO3, and MgO at Cryogenic Temperatures.” IEEE Transactions on Microwave Theory and Techniques, vol. 4, no. 10, pp. 1886-1890, 1994.
[40] R. G. Geyer, and J. Krupka, "Microwave dielectric properties of anisotropic materials at cryogenic temperatures." IEEE Transactions on Instrumentation and Measurement. vol. 44, no. 2, 329-331,1995.
[41] M. N. Afsar, X. Li, and H. Chi, “An automated 60 GHz open resonator system for precision dielectric measurements”. IEEE Transactions on Microwave Theory and Techniques, vol. 38, no. 12, pp. 1845-1853, 1990.
[42] Note, Agilent Application. "Agilent basics of measuring the dielectric properties of materials." Agilent literature number, 2006.
[43] K. W. Allen, M. M. Scott, D. R. Reid, J. A. Bean, J. D. Ellis, A. P. Morris, and J. M. Marsh, "An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity." Review of Scientific Instruments, vol. 87, no. 5, pp. 054703, 2016.
[44] D. Ballo. Network Analyzer Basic, Hewlett Packard Company, Santa Rosa, CA.
[45] K. Y. You, K.Y., and K. Goudos Sotirios. "Materials characterization using microwave waveguide system." Microwave Systems and Applications. InTech, Coratia, pp. 341-358, 2017.
[46] A. M. Nicolson, and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques." IEEE Transactions on instrumentation and measurement, vol. 19, no. 4, pp. 377-382, 1970.
[47] W. B Weir. "Automatic measurement of complex dielectric constant and permeability at microwave frequencies." Proceedings of the IEEE, vol. 62, no.1, pp. 33-36, 1974.
[48] C. Tsipogiannis. "Microwave materials characterization using waveguides and coaxial probe," Master dissertation, Lund University, Sweden, 2012.
[49] V. S. Yadav, D. K. Sahu, Y. Singh, M. Kumar, and D. C. Dhubkarya, "Frequency and temperature dependence of dielectric properties of pure poly vinylidene fluoride (PVDF) thin films." AIP Conference Proceedings. vol. 1285. no. 1, 2010.
[50] A. Elrashidi, K. Elleithy, and H. Bajwa, "Resonance Frequency, Gain, Efficiency and Quality Factor of a Microstrip Printed Antenna as a Function of Curvature for TM01 mode Using Different Substrates." Journal of Wireless Networking and Communications, vol. 1, pp. 1-8, 2011.
[51] B. Ravelo, A. Thakur, A. Saini, and P. Thakur, "Microstrip Dielectric Substrate Material Characterization with Temperature Effect." Applied Computational Electromagnetics Society Journal, vol. 30, no.12, 2015.
[52] R. Gonçalves, R. Magueta, P. Pinho, and N. B. Carvalho, "Dissipation Factor and Permittivity Estimation of Dielectric Substrates Using a Single Microstrip Line Measurement." Applied Computational Electromagnetics Society Journal, vol. 31, no. 2, 2016.
[53] J. Paleček, M. Vestenický, P. Vestenický, and J. Spalek, "Frequency Dependence Examination of PCB Material FR4 Relative Permittivity." IFAC Proceedings, vol. 46, no. 28, pp. 90-94, 2013.
[54] T. Rovensky, A. Pietrikova, I. Vehec, and M. Kmec, "Measuring of dielectric properties by microstrip resonators in the GHz frequency." 2015 38th International Spring Seminar on Electronics Technology (ISSE), IEEE, 2015.
[55] H. I. Azeez, W. S. Chen, C. K. Wu, C. M. Cheng, and H. C. Yang, "A Simple Resonance Method to Investigate Dielectric Constant of Low Loss Substrates for Smart Clothing." Sensors and Materials, vol. 30, no. 3, pp. 595-608, 2018.
[56] P. Troughton, "Measurement techniques in microstrip." Electronics letters, vol. 5, no. 2, pp. 25-26, 1969.
[57] B. Jackson, and T. Jayanthy. "Measurement of complex permittivity using planar resonator sensor." IOSR J. Electron. Commun. Eng version I. vol. 9, no.1, pp. 2278-8735, 2014.
[58] A. K. Verma, and A. S. Omar. "Microstrip resonator sensors for determination of complex permittivity of materials in sheet, liquid and paste forms." IEE Proceedings-Microwaves, Antennas and Propagation, vol. 152, no. 1, pp. 47-54, 2005.
[59] J. M. Heinola, P. Silventoinen, K. Latti, M. Kettunen, and J. P. Strom, "Determination of dielectric constant and dissipation factor of a printed circuit board material using a microstrip ring resonator structure." 15th International Conference on Microwaves, Radar and Wireless Communications (IEEE Cat. No. 04EX824), vol. 1, 2004.
[60] A. Rashidian, M. T. Aligodarz and D. M. Klymyshyn, "Dielectric characterization of materials using a modified microstrip ring resonator technique," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 19, no. 4, pp. 1392-1399, 2012.
[61] J. Svacina, "Analysis of multilayer microstrip lines by a conformal mapping method." IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 4, pp. 769-772, 1992.
[62] S. Sankaralingam, and B. Gupta. "Determination of dielectric constant of fabric materials and their use as substrates for design and development of antennas for wearable applications." IEEE Transactions on Instrumentation and Measurement, vol. 59, no.12, pp. 3122-3130, 2010.
[63] Material Property Database PDMS,
Available: http://www.mit.edu/~6.777/matprops/pdms.htm.
[64] Silicone Rubber, Available:
https://www.azom.com/properties.aspx?ArticleID=920.
[65] A Definition of FR-4, Available:
http://www.ieee802.org/3/ap/public/may04/2
[66] D. Numakura, “Advanced Screen Printing "Practical Approaches for Printable & Flexible Electronics," 3rd Intl Microsystem, Packaging Assembly and Circuits Technology Conference, pp. 205 – 208, 2008
[67] H. Berg, M. Schubert, S. Friedrich and K. Bock, “Screen printed conductive pastes for biomedical electronics,” 39th Intl Spring Seminar on Electronics Technology (ISSE), pp. 1-6, 2016.
[68] D. Mercier, J. P. Michel, J. Chautagnat, C. Baret, C. Bonnard, H. Sibuet, C. Billard, M. Benwadih, O. Haon, R. Coppard and J. Y. Laurent, “Screen printed lumped element filters based on silver nanoparticle ink.” 47th European Microwave Conference (EuMC), pp. 176-179, 2017.
[69] M. Dressler, T. Studnitzky and B. Kieback, “Additive manufacturing using 3D screen printing.” International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 476 – 478, 2017.
[70] M. Jakubowska, S. Achmatowicza, V. Baltrusaitisa, A. Moizniaka, I. Wyzkiewicza and E. Zwierkowskaa, “Investigation on a new silver photoimageeable conductor,” Microelectronic Realibility, vol. 48, no. 6, pp. 860-865, 2008.
[71] S. Muckett and J. Minalgene, “Hibridas photoimageable think film process and materials for microwave and sensor component applications, 2nd IEMT.IMC Symp, pp. 154-160, 1998.
[72] S. D. Park, M. J. Yoo, N. K. Kanf, J. C. Park, L. K. Lim and D. K. Kim, “Fabrication of photoimageable silver paste for low temperature cofiring using acrylic binder polymers and photosensitive materials,” Macromolecular Research, vol. 12, no. 4, pp. 391-398, 2004.
[73] W. Su, B. S. Cook, M. M. Tentzeris, “Low-Cost Microfluidics-Enabled Tunable Loop Antenna Using Inkjet-Printing Technologies,” 9th European Conference. on Antenna and Propagation, 2015.
[74] H. Ibili and Ö. Ergül, “Very low-cost inkjet-printed metamaterials: Progress and challenges,” IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2017.
[75] M. Tursunniyaz and R. Baktur, “Inkjet printing of antennas on glass or solar cells,” IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp. 865 – 866, 2017.
[76] D. Lawrence, J. Kohler, B. Brolklier T. Claypole, T. BurginKatz, J. Veinot, “Manufacturing Platforms for Printing Organic Circuits.” in Printed Organic and Molecular Electronics, DR Gamota, P. Brazis, K. Kalyansundaram and J. Zhang. ed., Springer, USA, pp. 320-321, 2004.
[77] Berry, D., R. Malech, and W. Kennedy. "The reflectarray antenna." IEEE Transactions on Antennas and Propagation, vol. 11, no. 6, pp. 645-651, 1963.
[78] Phelan, H. Richard. "Spiraphase reflectarray for multitarget radar." Microwave Journal vol. 20, pp. 67, 1977.
[79] C. S. Malagisi, "Microstrip disc element reflect array." EASCON'78; Electronics and Aerospace Systems Convention, 1978.
[80] J. P. Montgomery, "A microstrip reflectarray antenna element." in Antenna Applications Symposium, 1978.
[81] E. Öztürk, and B. Saka, “Double orthogonal phase stubs technique for Minkowski fractal reflectarray antenna. Journal of Electromagnetic Waves and Applications, vol.33, no. 5, pp. 601-611, 2019.
[82] Huang, John. "Microstrip reflectarray." Antennas and Propagation Society Symposium 1991 Digest, IEEE, 1991.
[83] T. A. Metzler. Design and analysis of a microstrip reflectarray. PhD Thesis, University of Massachusetts Amherst, 1993.
[84] Y. Zhuang, K. L. Wu, C. Wu, and J. Litva. “Microstrip reflectarrays: Full-wave analysis and design scheme.” In Proceedings of IEEE Antennas and Propagation Society International Symposium, IEEE, pp. 1386-1389, 1993.
[85] R. D. Javor, X-D. Wu, and K. Chang. "Beam steering of a microstrip flat reflectarray antenna." Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting. vol. 2. IEEE, 1994.
[86] D-C. Chang, and M.-C. Huang. "Multiple-polarization microstrip reflectarray antenna with high efficiency and low cross-polarization." IEEE Transactions on Antennas and Propagation, vol. 43 no.8, pp. 829-834, 1995.
[87] A. Kelkar, "FLAPS: conformal phased reflecting surfaces." Proceedings of the 1991 IEEE National Radar Conference. IEEE, 1991.
[88] D. M. Pozar, and T. A. Metzler. "Analysis of a reflectarray antenna using microstrip patches of variable size." Electronics Letters, vol. 29, no.8 pp. 657-658, 1993.
[89] David M. Pozar, Stephen D. Targonski, and H. D. Syrigos. "Design of millimeter wave microstrip reflectarrays." IEEE Transactions on Antennas and Propagation, vol. 45 no. 2, pp. 287-29, 1997.
[90] K. Y. Sze, and L. Shafal. "Analysis of phase variation due to varying patch length in a microstrip reflectarray." IEEE Antennas and Propagation Society International Symposium. 1998 Digest. Antennas: Gateways to the Global Network. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 98CH36). vol. 2. IEEE, 1998.
[91] J. Huang, "Bandwidth study of microstrip reflectarray and a novel phased reflectarray concept." IEEE Antennas and Propagation Society International Symposium. 1995 Digest. vol. 1. IEEE, 1995.
[92] J. Huang, and R. J. Pogorzelski. "Microstrip reflectarray with elements having variable rotation angles." IEEE Antennas and Propagation Society International Symposium 1997. Digest. vol. 2. IEEE, 1997.
[93] A. W. Rudge, and A. A. Nurdin, "Offset-parabolic-reflector antennas: A review." Proceedings of the IEEE, vol. 66 no.12, pp.1592-1618, 1978.
[94] Johansson, F. Stefan. "A new planar grating-reflector antenna." IEEE transactions on antennas and propagation, vol. 38, no.9, pp. 1491-1495, 1990.
[95] E. Ozturk, “X-Bantta minkowski yansıtıcs dizi anten analiz ve tasarımı.”
Ph.D. Thesis, Hacettepe University, Ankara, Turkey 2018.
[96] A. A. Tolkachev, V. V. Denisenko, A. V. Shishlov, and A. G. Shubov, "High gain antenna systems for millimeter wave radars with combined electronical and mechanical beam steering." Proceedings of International Symposium on Phased Array Systems and Technology, IEEE, 1996.
[97] Colin, J-M. "Phased array radars in France: Present and future." Proceedings of International Symposium on Phased Array Systems and Technology. IEEE, 1996.
[98] E. Carrasco, B. Mariano and J. A. Encinar. "Reflectarray element based on aperture-coupled patches with slots and lines of variable length." IEEE Transactions on Antennas and Propagation, vol. 55, no.3, pp. 820-825, 2007.
[99] R. Mathieu, and J-J. Laurin. "Design of an electronically beam scanning reflectarray using aperture-coupled elements." IEEE Transactions on Antennas and Propagation, vol. 55, no.5, pp. 1260-1266, 2007.
[100] M. E. Bialkowski, and J. A. Encinar. "Reflectarrays: Potentials and challenges." 2007 International Conference on Electromagnetics in Advanced Applications. IEEE, 2007.
[101] T-N. Chang, and C-S. Chu. "Cross-polarisation level of reflectarray with gapped ring elements." Electronics Letters, vol. 43, no.5, pp. 1-2, 2007.
[102] M. Ramli, A. N. Selamat, N. Misran, M. F. Mansor, and M. T. Islam, “Superposition of reflectarray elements for beam scanning with phase range enhancement and loss improvement.” ARPN Journal of Engineering and Applied Sciences, vol. 11, no. 3, pp. 1755-1758, 2016.
[103] M. Y. Ismail, W. Hu, R. Cahill, V. F. Fusco, H. S. Gamble, D. Linton, and N. Grant, "Phase agile reflectarray cells based on liquid crystals." IET Microwaves, Antennas & Propagation, vol. 1, no.4, pp. 809-814, 2007.
[104] Malik, H. I., Ismail, M. Y., Adnan, S., Masrol, S. R., & Nafarizal, N. “A wideband reflectarray antenna based on organic substrate materials.” Telkomnika, vol. 17, no.1, 2019.
[105] P. Nayeri, M. Liang, R. A. Sabory-Garcı, M. Tuo, F. Yang, M. Gehm, and A. Z. Elsherbeni, "3D printed dielectric reflectarrays: Low-cost high-gain antennas at sub-millimeter waves." IEEE Transactions on Antennas and Propagation, vol. 62, no. 4, pp. 2000-2008, 2014.
[106] H. B. Van, P. Pirinoli, M. Orefice, and F. Yang, "Wideband conformal reflectarrays: preliminary analysis." 2014 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, pp. 842-843, 2014.
[107] H. Fang, U. Quijano, K. Knarr, J. Huang, and R. Lovick, "Experimental and analytical studies of a large in-space deployable dual-band membrane reflectarray antenna." The Interplanetary Network Progress Report, vol. 42, pp. 169, 2007.
[108] C. Han, J. Huang, and K. Chang. "A high efficiency offset-fed X/Ka-dual-band reflectarray using thin membranes." IEEE Transactions on Antennas and Propagation, vol. 53, no.9, pp. 2792-2798, 2005.
[109] X. Yang, H. Li, J. Zhao, and G. Yan, "A Single-Layer High-Efficiency Broadband Reflectarray Antenna Using Thin Membrane." 2018 International Applied Computational Electromagnetics Society Symposium-China (ACES). IEEE, 2018.
[110] “DARPA prototype reflectarray antenna offers high performance in small package”, Available at:
https://www.intelligent-aerospace.com/satcom/article/16543450/darpa-prototype-reflectarray-antenna-offers-high-performance-in-small-package
[111] M. M., Tahseen, and A. A. Kishk, "Practical investigation of different possible textile unit cell for a c-band portable textile reflectarray using conductive thread." Progress in Electromagnetics Research, vol. 66, pp. 15-29, 2016.
[112] M. M., Tahseen, and A. A. Kishk, "Flexible and portable textile-reflectarray backed by frequency selective surface." IEEE Antennas and Wireless Propagation Letters, vol. 17, no.1, pp. 46-49, 2017.
[113] M. M. Tahseen, and A. A. Kishk, "C-band linearly polarised textile-reflectarray (TRA) using conductive thread." IET Microwaves, Antennas & Propagation, vol. 11, no.7, pp. 982-989. 2017.
[114] H. Mosallaei, and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate." IEEE Transactions on Antennas and Propagation, vol. 52, no.9, pp. 2403-2414, 2004.
[115] H. Rajagopalan, and Y. Rahmat-Samii. "On the reflection characteristics of a reflectarray element with low-loss and high-loss substrates." IEEE Antennas and Propagation Magazine, vol. 52, no. 4, pp. 73-89, 2010.
[116] A. K. Bhattacharyya. "Phased array antennas." Floquet analysis, synthesis, BFNs, and active array systems. A John Wiley &Sons, Inc., Publication, 2006.
[117] S. D. Targonski, and D. M. Pozar, "Analysis and design of a microstrip reflectarray using patches of variable size." Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, vol. 3. IEEE, 1994.
[118] D. M. Pozar, “Microstrip reflectarrays myths and realities,” JINA 2004, International Symposium on Antennas, Nice, France, pp. 175–179, November 2004.
[119] T. Metzler, and D. Schaubert. "Scattering from a stub loaded microstrip antenna." Digest on Antennas and Propagation Society International Symposium, IEEE, 1989.
[120] Y. Zhuang, K. L. Wu, C. Wu, and J. Litva, "Microstrip reflectarrays: Full-wave analysis and design scheme." Proceedings of IEEE Antennas and Propagation Society International Symposium. IEEE, 1993.
[121] Y. Zhuang, J. Litva, C. Wu, and K. L. Wu, "Modelling studies of microstrip reflectarrays." IEE Proceedings-Microwaves, Antennas and Propagation. vol. 142, no.1, pp. 78-80, 1995.
[122] D. Cadoret, A. Laisne, M. Milon, R. Gillard, and H. Legay, "FDTD analysis of reflectarray radiating cells." IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005 IEEE, pp. 853-856. 2005.
[123] D. M. Pozar and D. H. Schaubert. "Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds." IEEE Transactions on Antennas and Propagation, vol. 32, pp. 1101-1107, 1984.
[124] D. M. Pozar. "Analysis of an infinite phased array of aperture coupled microstrip patches." IEEE Transactions on Antennas and Propagation, vol. 37 no.4, pp. 418-425, 1989.
[125] R. Mittra, H. C. Chan, and T. Cwik. "Techniques for analyzing frequency selective surfaces-a review." Proceedings of the IEEE, vol. 76 no.12, pp. 1593-1615, 1988.
[126] C. Wan, and J. A. Encinar, "Efficient computation of generalized scattering matrix for analyzing multilayered periodic structures." IEEE Transactions on Antennas and Propagation, vol. 43 no. 11, pp. 1233-1242.
[126] I. Bardi, R. Remski, D. Perry, and Z. Cendes, "Plane wave scattering from frequency-selective surfaces by the finite-element method." IEEE Transactions on Magnetics, vol. 38 no. 2, pp. 641-644, 2002.
[127] P. Harms, R. Mittra, and K. Wai. "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures." IEEE Transactions on Antennas and Propagation, vol. 42 no.9, pp. 1317-1324, 1994.
[128] M. Lambea, M. A. Gonzalez, J. A. Encinar, and J. Zapata, "Analysis of frequency selective surfaces with arbitrarily shaped apertures by finite element method and generalized scattering matrix." IEEE Antennas and Propagation Society International Symposium. 1995 Digest, vol. 3, IEEE, 1995.
[129] P. Hannan, and M. Balfour. "Simulation of a phased-array antenna in waveguide." IEEE transactions on Antennas and Propagation, vol. 13 no.3 pp. 342-353, 1965.
[130] H. Mosallaei, and K. Sarabandi. "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate." IEEE Transactions on Antennas and Propagation, vol. 52, no. 9, pp. 2403-2414, 2004.
[131] E. Carrasco, J. A. Encinar, and M. Barba. "Wideband reflectarray antenna using true-time delay lines." 2nd European Conference on Antennas and Propagation (EuCAP 2007), pp. 8-8, 2007.
[132] P. Nayeri, Y. Fan, and A. Z. Elsherbeni. Reflectarray Antennas: Theory, Designs, and Applications. John Wiley & Sons, 2018, pp.74.
[133] J. A. Encinar, "Design of two-layer printed reflectarrays using patches of variable size." IEEE Transactions on Antennas and Propagation, vol. 49, no.10 pp. 1403-1410, 2001.
[134] M. E. Bialkowski and K. H. Sayidmarie, “Investigations into phase characteristics of a single layer reflectarray employing patch or ring elements of variable size.” IEEE Trans. Antennas and Propagation, vol. 56, no. 11, pp. 3366–3372, 2008.
[135] K-C. Chen, C. K. Tzuang and J. Huang, "A higher-order microstrip reflectarray at Ka-band," IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229), vol.3, pp. 566-569, 2001,
doi: 10.1109/APS.2001.960160.
[136] Shaker, Jafar, Mohammad Reza Chaharmir, and Jonathan Ethier. Reflectarray antennas: analysis, design, fabrication, and measurement. Artech House, 2013.
[137] J. Huang, and R. J. Pogorzelski. "A Ka-band microstrip reflectarray with elements having variable rotation angles." IEEE Transactions on Antennas and Propagation, vol. 46 no. 5, pp. 650-656, 1998.
[138] E. Ozturk and B. Saka, "Multilayer Minkowski Reflectarray Antenna with Improved Phase Performance, "IEEE Transactions on Antennas and Propagation, vol. 69, no. 12, pp. 8961-8966, 2021.
[139] J. A. Encinar, and J. A. Zornoza. "Broadband design of three-layer printed reflectarrays." IEEE Transactions on Antennas and Propagation, vol. 51, no. 7, pp. 1662-1664, 2003.
[140] R. F. E'qab, and D. A. McNamara, "Angle of Incidence Effects in Reflectarray Antenna Design: Making gain increases possible by including incidence angle effects." IEEE Antennas and Propagation Magazine, vol. 58, no. 5 pp. 52-64, 2016.
[141] Mailloux, Robert J. Phased Array Antenna Handbook. Artech House, UK. 2018.
[142] Skolnik, Merrill I. Introduction to Radar. Radar handbook, Ed. 2, Mc Graw-Hill, New York, 1962, pp. 21.
[143] Lo, Yuen T. Antenna handbook: Antenna Fundamentals and Aathematical Techniques. Springer Science & Business Media, USA,1993.
[144] M. H. Dahri, M. H. Jamaluddin, F. C. Seman, M. I. Abbasi, N. F. Sallehuddin, A. Y. I. Ashyap, and M. R. Kamarudin, “Aspects of Efficiency Enhancement in Reflectarrays with Analytical Investigation and Accurate Measurement." Electronics, vol. 9, no. 11, pp. 1887. 2020.
[145] A. Yu, F. Yang, A. Z. Elsherbeni, J. Huang, & Y. Rahmat‐Samii, "Aperture efficiency analysis of reflectarray antennas." Microwave and Optical Technology Letters, vol. 52, no. 2, pp. 364-372, 2010.
[146] J. Silvestro. “Hybrid Finite Element Boundary Integral Method”. White paper, ANSYS, INC. Available: https://support.ansys.com/staticassets/ANSYS/staticassets/resourcelibrary/whitepaper/wp-HFSS-Hybrid-Finite-Element-Integral-Equation-Method.pdf
[147] P. Galvin, "Investigation of Magnitude and Phase Errors in Waveguide Samples for the Nicolson-Ross-Weir Permittivity Technique,” Master Thesis, University of New Hampshire, Durham USA. 2016.
[148] J. Baker-Jarvis, E. J. Vanzura, and W. A. Kissick. "Improved technique for determining complex permittivity with the transmission/reflection method." IEEE Trans. Microw. Theory Tech., vol. 38, no. 8, pp. 1096-1103, 1990.
[149] N. Naseer, D. Gokcen, and B. Saka, "Analysis and Design of Stopband FSS Unit Cell on Textile Substrates." IEEE Letters on Electromagnetic Compatibility Practice and Applications, vol. 3, no.1 15-18, 2020.