Show simple item record

dc.contributor.advisorYurdugül, Halil
dc.contributor.authorAydın, Furkan
dc.date.accessioned2021-11-25T08:39:57Z
dc.date.issued2021
dc.date.submitted2021-10-13
dc.identifier.citationAbyaa, A., Idrissi, M. K., & Bennani, S. (2019). Learner modelling: systematic review of the literature from the last 5 years. Educational Technology Research and Development, 67(5), 1105-1143. Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. Journal of the Learning Sciences, 4, 167–207. Aydın, M., Aydın, F. & Yurdugül, H. (2020). Eğitsel veri madenciliği bağlamında ikili benzerlik ve farklılık hesaplamaları. H. Yurdugül, S. Yıldırım, T. Güyer (Ed.), Eğitsel Veri Madenciliği ve Öğrenme Analitikleri (s. 56-73). Anı Yayıncılık, Ankara Bates, A. T. (2005). Technology, e-learning and distance education. Routledge. Bayrak, F., Aydın, F. & Yurdugul, H. (In Press). Navigational Behavior Patterns of Learners on Dashboards Based on Assessment Analytics. M. Sahin, D. Ifenthaler (Eds.) Visualizations and Dashboards for Learning Analytics. Springer International Publishing. Beck, J., Stern, M., & Haugsjaa, E. (1996). Applications of AI in Education. Crossroads, 3(1), 11-15. Ben-Gal, I. (2008). Bayesian Networks. In Encyclopedia of Statistics in Quality and Reliability; John Wiley & Sons, Ltd.: Hoboken, NJ, USA. Binh, H. T., Trung, N. Q., & Duy, D. & (2021). Responsive student model in an intelligent tutoring system and its evaluation. Education and Information Technologies, 1-23. Blessing, S. B., Gilbert, S. B., Ourada, S., & Ritter, S. (2009). Authoring model-tracing cognitive tutors. International Journal of Artificial Intelligence in Education, 19(2), 189-210. Bloom, B.S. (1984). The 2 sigma problem: The search for methods of group instruction as effective as one-to-one tutoring. Educational Researcher, 13(6), 4-16. Brooks, C., Greer, J., Melis, E., & Ullrich, C. (2006, June). Combining its and elearning technologies: Opportunities and challenges. In International Conference on Intelligent Tutoring Systems (pp. 278-287). Springer, Berlin, Heidelberg. Brown, J. S., & Burton, R. R. (1978). Diagnostic models for procedural bugs in basic mathematical skills. Cognitive science, 2(2), 155-192. Brown, J.S., Burton R.R., Miller, M.L., DeKleer, J., Purcell, S., Hausmann, C., & Bobrow, R. (August,1975). Steps toward a theoretical foundation for complex knowledge-based CAI (Final Report). Bolt, Beranek and Newman. Brusilovskiy, P. L. (1994). The construction and application of student models in intelligent tutoring systems. Journal of computer and systems sciences international, 32(1), 70-89. Brusilovsky, P., & Millán, E. (2007). User models for adaptive hypermedia and adaptive educational systems. In The adaptive web (pp. 3-53). Springer, Berlin, Heidelberg. Brusilovsky, P., Schwarz, E., & Weber, G. (1996, June). ELM-ART: An intelligent tutoring system on World Wide Web. In International conference on intelligent tutoring systems (pp. 261-269). Springer, Berlin, Heidelberg. Butz, C. J., Hua, S., & Maguire, R. B. (2006). A web-based bayesian intelligent tutoring system for computer programming. Web Intelligence and Agent Systems: An International Journal, 4(1), 77-97. Büyüköztürk, Ş. (1998). Kovaryans analizi: Varyans analizi ile karşılaştırmalı bir inceleme. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 31(1), 91- 105. Büyüköztürk, Ş., Akgün, Ö. E., Kahveci, Ö., & Demirel, F. (2004). Güdülenme ve öğrenme stratejileri ölçeğinin Türkçe formunun geçerlik ve güvenirlik çalışması. Kuram ve Uygulamada Eğitim Bilimleri, 4(2), 207-239. Carbonell, J. R. (1970). AI in CAI: An artificial-intelligence approach to computer-assisted instruction. IEEE transactions on man-machine systems, 11(4), 190-202. Carmona, C., & Conejo, R. (2004). A learner model in a distributed environment. In International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (pp. 353-359). Springer, Berlin, Heidelberg. Cha, S. H. (2007) Comprehensive survey on distance/similaritymeasures between probability density functions. Int J Math Models Methods Appl Sci, 1(4), 300–307. Chierichetti, F., Kumar, R., Pandey, S., & Vassilvitskii, S. (2010). Finding the jaccard median. In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms (pp. 293-311). Society for Industrial and Applied Mathematics Chrysafiadi, K., & Virvou, M. (2012). Evaluating the integration of fuzzy logic into the student model of a web-based learning environment. Expert Systems with Applications, 39(18), 13127-13134. Chrysafiadi, K., & Virvou, M. (2013). Student modeling approaches: A literature review for the last decade. Expert Systems with Applications, 40(11), 4715-4729. Clutterbuck, D., & Megginson, D. (2005). Making coaching work: Creating a coaching culture. CIPD Publishing. Conati, C. (2009, June). Intelligent tutoring systems: new challenges and directions. In Twenty-First International Joint Conference on Artificial Intelligence. Conati, C., Gertner, A., & Vanlehn, K. (2002). Using Bayesian networks to manage uncertainty in student modeling. User modeling and user-adapted interaction, 12(4), 371-417. Dahl, O. H., & Fykse, O. (2018). Combining Elo Rating and Collaborative Filtering to improve Learner Ability Estimation in an e-learning Context (Master's thesis, NTNU). De Bra, P., & Calvi, L. (1998, June). AHA: a generic adaptive hypermedia system. In Proceedings of the 2nd Workshop on Adaptive Hypertext and Hypermedia (pp. 5-12). sn. Dobinguez, N, & Hager, M. (2013). Mentoring frameworks: synthesis and critique. International Journal of Mentoring and Coaching in Education, 2(3), 171-188. Doğan, B. (2006). Zeki Öğretim Sistemlerinde Veri Madenciliği Kullanılması (Doktora Tezi). Marmara Üniversitesi, İstanbul. Dragon, T., & Mitchell, E. K. (2018, March). TECMap: Technology-Enhanced Concept Mapping for Curriculum Organization and Intelligent Support. In International Conference on Computer Supported Education (pp. 191-213). Springer, Cham. Elsom-Cook, M. (1987). Intelligent Computer-Aided Instruction Research at the Open University. CITE Report No. 10. Erdemir, M. (2015). İnternet Tabanlı Bir Zeki Öğretim Sisteminin Fizik Eğitimine Uyarlanması ve Uygulanması (Doktora Tezi). Gazi Üniversitesi, Ankara. Eryılmaz, M., & Adabashi, A. (2020). Development of an Intelligent Tutoring System Using Bayesian Networks and Fuzzy Logic for a Higher Student Academic Performance. Applied Sciences, 10(19), 6638. Evens, M., & Michael, J. (2006). One-on-one tutoring by humans and computers. Psychology Press. Fraenkel, J., Wallen, N., & Hyun, H. (2011). How to design and evaluate research in education. 8th Edition. Columbus, OH: McGraw-Hill. Gamboa, H., & Fred, A. (2002). Designing intelligent tutoring systems: a bayesian approach. Enterprise Information Systems III. Edited by J. Filipe, B. Sharp, and P. Miranda. Springer Verlag: New York, 146-152. Gaudioso, E., Montero, M., & Hernandez-del-Olmo, F. (2012). Supporting teachers in adaptive educational system through predictive models: A proof of concept. Expert Systems with Applications, 39(1), 621–625. Glushkova, T. (2008). Adaptive model for user knowledge in the e-learning system. In Proceedings of the 9th International Conference on Computer Systems and Technologies and Workshop for PhD Students in Computing (pp. V-16). Gong, Y. (2014). Student modeling in Intelligent Tutoring Systems. Worcester Polytechnic Institute. Graesser, A. C., Chipman, P., Haynes, B. C., & Olney, A. (2005). AutoTutor: An intelligent tutoring system with mixed-initiative dialogue. IEEE Transactions on Education, 48(4), 612-618. Graesser, A. C., Wiemer-Hastings, K., Wiemer-Hastings, P., Kreuz, R., & Tutoring Research Group. (1999). AutoTutor: A simulation of a human tutor. Cognitive Systems Research, 1(1), 35-51. Grivokostopoulou, F., Perikos, I., & Hatzilygeroudis, I. (2017). An educational system for learning search algorithms and automatically assessing student performance. International Journal of Artificial Intelligence in Education, 27(1), 207-240. Grubišić, A., Stankov, S., & Peraić, I. (2013). Ontology based approach to Bayesian student model design. Expert systems with applications, 40(13), 5363-5371. Grubišić, A., Žitko, B., & Stankov, S. (2020). Student model initialization using domain knowledge ontology representative subset. JOTSE: Journal of Technology and Science Education, 10(1), 60-71. Gutierrez, F., & Atkinson, J. (2011). Adaptive feedback selection for intelligent tutoring systems. Expert Systems with Applications, 38(5), 6146-6152. Güyer, T. & Çebi, A. (2020). Bayes Ağları Yaklaşımı ile Uyarlanabilir Öğrenme Ortamları H. Yurdugül, S. Yıldırım, T. Güyer (Ed.), Eğitsel Veri Madenciliği ve Öğrenme Analitikleri (s. 56-73). Anı Yayıncılık, Ankara. Güyer, T., Somyürek, S., Atasoy, B., Yurdugül, H., Ünal, M. & Aydoğdu Ş. (2018). “Öğrenme Analitiği Göstergelerinin Sınıflandırılması”, 6th International Instructional Technologies & Teacher Education Symposium (ITTES 2018), Edirne, Türkiye, 12-14 Eylül 2018. Hampton, G., Rhodes, C., & Stokes, M. (2004). A practical guide to mentoring, coaching and peer-networking: Teacher professional development in schools and colleges. Routledge. Heckler, A. F., & Mikula, B. D. (2016). Factors affecting learning of vector math from computer-based practice: Feedback complexity and prior knowledge. Physical Review Physics Education Research, 12(1), 010134. Heffernan, N. T., Koedinger, K. R., & Razzaq, L. (2008). Expanding the model-tracing architecture: A 3rd generation intelligent tutor for algebra symbolization. International Journal of Artificial Intelligence in Education, 18(2), 153-178. Heller, M. P., & Sindelar, N. W. (1991). Develop-ing an effective teacher mentor program. Fastback 319. Bloomington, IN: Phi Delta Kappa Educa-tional Foundation. Holt, P., Dubs, S., Jones, M., & Greer, J. (1994). The state of student modelling. In Student modelling: The key to individualized knowledge-based instruction (pp. 3-35). Springer, Berlin, Heidelberg Hsieh, S. J., & Cheng, Y. T. (2014). Algorithm and intelligent tutoring system design for programmable controller programming. The International Journal of Advanced Manufacturing Technology, 71(5-8), 1099-1115. Irby, B. J. (2012). Editor’s overview: Mentoring, tutoring, and coaching, Mentoring & Tutoring: Partnership in Learning, 20(3), 297–301,DOI: 10.1080/13611267.2012.708186 Johnson, W. L., Rickel, J. W., & Lester, J. C. (2000). Animated pedagogical agents: Face-to-face interaction in interactive learning environment. International Journal of Artificial Intelligence in Education, 11, 47–78. Karaci, A. (2019). Intelligent tutoring system model based on fuzzy logic and constraint-based student model. Neural Computing and Applications, 31(8), 3619-3628. Kassim, A. A., Kazi, S. A., & Ranganath, S. (2004). A Web-based intelligent learning environment for digital systems. International Journal of Engineering Education, 20(1), 13–23. Kay, J. (2000, June). Stereotypes, student models and scrutability. In International Conference on Intelligent Tutoring Systems (pp. 19-30). Springer, Berlin, Heidelberg. Kaya, S. (2005). Microsoft Excel Öğretimi İçin Zeki Öğretim sistemi (Yüksek Lisans Tezi). Gazi Üniversitesi, Ankara. Keleş, A., Ocak, R., Keleş, A., & Gülcü, A. (2009). ZOSMAT: Web-based intelligent tutoring system for teaching–learning process. Expert Systems with Applications, 36(2), 1229-1239. Keskin, S. (2019). Uyarlanabilir Dönüt Sistemi Tasarımı İçin Kullanıcı Profillerinin Belirlenmesi (Doktora Tezi). Hacettepe Üniversitesi, Ankara. Kodaganallur, V., Weitz, R. R., & Rosenthal, D. (2005). A comparison of model-tracing and constraint-based intelligent tutoring paradigms. International Journal of Artificial Intelligence in Education, 15(2), 117-144. Koedinger, K. R., & Corbett, A. T. (2006). Cognitive tutors: technologybringing learning science to the classroom. In K. Sawyer (Ed.),TheCambridge handbook of the learning sciences (pp. 61e78). New York:Cambridge University Press Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent tutoring goes to school in the big city. International Journal of Artificial Intelligence in Education, 8(1), 30-43. Kolodner, J. (1993). Case-Based Reasoning. Morgan Kaufmann Publisher Inc., San Mateo CA Krige, A. (1998). Intelligent tutoring systems: BUGGY. Retrieved December 07, 2019 from http://tecfa.unige.ch/staf/staf-d/krige/staf11/buggy.html. Kumar, A. N. (2006). Using Enhanced Concept Map for Student Modeling in Programming Tutors. In FLAIRS Conference (pp. 527-532). Kumar, A., Singh, N., & Ahuja, N. J. (2017). Learning styles based adaptive intelligent tutoring systems: Document analysis of articles published between 2001. and 2016. International Journal of Cognitive Research in Science, Engineering and Education, 5(2), 83. Latham, A., Crockett, K., McLean, D., & Edmonds, B. (2012). A conversational intelligent tutoring system to automatically predict learning styles. Computers & Education, 59(1), 95-109. Lehman, B., Matthews, M., D’Mello, S., & Person, N. (2008). What are you feeling? Investigating student affective states during expert human tutoring sessions. In International conference on intelligent tutoring systems (pp. 50-59). Springer, Berlin, Heidelberg. Lesgold, A. M., & Mandl, H. (1988). Learning issues for intelligent tutoring systems. New York, NY: Springer-Verlag. Litman, D., & Silliman, S. (2004). ITSPOKE: An intelligent tutoring spoken dialogue system. In Demonstration papers at HLT-NAACL 2004 (pp. 5-8). Lu, C. H., Wu, C. W., Wu, S. H., Chiou, G. F., & Hsu, W. L. (2005). Ontological support in modeling learners' problem solving process. Educational Technology and Society, 8(4), 64–74. Mahnane, L., Laskri, M. T., & Trigano, P. (2012). An adaptive hypermedia system integrating thinking style (AHS-TS): Model and experiment. International Journal of Hybrid Information Technology, 5(1), 11–28. Martin, F., Chen, Y., Moore, R. L., & Westine, C. D. (2020). Systematic review of adaptive learning research designs, context, strategies, and technologies from 2009 to 2018. Educational Technology Research and Development, 68(4), 1903-1929. Mayo, M., Mitrovic, A., & McKenzie, J. (2000, December). CAPIT: An intelligent tutoring system for capitalisation and punctuation. In Proceedings International Workshop on Advanced Learning Technologies. IWALT 2000. Advanced Learning Technology: Design and Development Issues (pp. 151-154). IEEE. McPheat, S. (2010) Coaching and mentoring. MTD Training & Ventus Publushing ApS. Melis, E., & Siekmann, J. (2004, June). Activemath: An intelligent tutoring system for mathematics. In International Conference on Artificial Intelligence and Soft Computing (pp. 91-101). Springer, Berlin, Heidelberg. Mitrovic, A. (2010). Modeling domains and students with constraint-based modeling. In Advances in intelligent tutoring systems (pp. 63-80). Springer, Berlin, Heidelberg. Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the art. International Journal of Artificial Intelligence in Education, 10, 98–129. Nkambou, R., Mizoguchi, R., & Bourdeau, J. (Eds.). (2010). Advances in intelligent tutoring systems (Vol. 308). Springer Science & Business Media. Ohlsson, S. (1986). Some principles of intelligent tutoring. Instructional Science 14, 293–326. Ohlsson, S. (1992). Constraint-based student modelling. Journal of Interactive Learning Research, 3(4), 429-447. Ohlsson, S. (1994). Constraint-based student modeling. In Student modelling: the key to individualized knowledge-based instruction (pp. 167-189). Springer, Berlin, Heidelberg. Ohlsson, S. (1996). Learning from performance errors. Psychological review, 103(2), 241-246. Ohlsson, S., & Mitrovic, A. (2007). Fidelity and efficiency of knowledge representations for intelligent tutoring systems. Technology, Instruction, Computers and Learning, 5,101–132. Özyurt, Ö. (2013). Uyarlanabilir zeki web tabanlı matematik öğrenme ortamının tasarlanması, uygulanması ve değerlendirilmesi (Doktora Tezi). Karadeniz Teknik Üniversitesi, Trabzon. Panagiotopoulos, I., Kalou, A., Pierrakeas, C., & Kameas, A. (2012, September). An ontology-based model for student representation in intelligent tutoring systems for distance learning. In IFIP International Conference on Artificial Intelligence Applications and Innovations (pp. 296-305). Springer, Berlin, Heidelberg. Paquette, L., Lebeau, J. F., & Mayers, A. (2012, July). Automating the modeling of learners’ erroneous behaviors in model-tracing tutors. In International Conference on User Modeling, Adaptation, and Personalization (pp. 316-321). Springer, Berlin, Heidelberg. Parsloe, E. & Wray, M. (2000) Coaching and Mentoring, London: Kogan Page. Parsloe, E., & Leedham, M. (2009). Coaching and mentoring: Practical conversations to improve learning. Kogan Page Publishers. Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Mateo: Morgan Kaufmann. Pelánek, R. (2017). Bayesian knowledge tracing, logistic models, and beyond: an overview of learner modeling techniques. User Modeling and User-Adapted Interaction, 27(3), 313-350. Pezeshki, Z., & Mazinani, S. M. (2019). Comparison of artificial neural networks, fuzzy logic and neuro fuzzy for predicting optimization of building thermal consumption: a survey. Artificial Intelligence Review, 52(1), 495-525. Pintrich, P.R., Smith, D.A.F., Garcia, T. & McKeachie, W.J. (1991). A Manual for the use of the motivated strategies for learning. Michigan: School of Education Building, The University of Michigan. ERIC veritabanı numarası: ED338122. Poitras, E. G., Lajoie, S. P., Doleck, T., & Jarrell, A. (2016). Subgroup Discovery with User Interaction Data: An Empirically Guided Approach to Improving Intelligent Tutoring Systems. Educational Technology & Society, 19(2), 204–214. Prentzas, J., & Hatzilygeroudis, I. (2002, September). Intelligent educational systems for individualized learning. In Workshop on Computer Science and Information Technologies CSIT. Pressey, S.L. (1926). A simple apparatus which gives tests and scores – and teaches. School and Society, 23 (586), 373–376. Ramadhan, H. A. (1997). Improving the engineering of model tracing based intelligent program diagnosis. IEE Proceedings-Software, 144(3), 149-161. Ramesh, V.M., & Rao, N.J. (2012). Tutoring and expert modules of intelligent tutoring systems. 2012 IEEE Fourth International Conference on Technology for Education. (251-252). Ramírez-Noriega, A., Juárez-Ramírez, R., & Martínez-Ramírez, Y. (2017). Evaluation module based on Bayesian networks to Intelligent Tutoring Systems. International Journal of Information Management, 37(1), 1488-1498. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994, October). GroupLens: an open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM conference on Computer supported cooperative work (pp. 175-186). Rich, E. (1979). User modeling via stereotypes. Cognitive science, 3(4), 329-354. Rich, E. (1989). Stereotypes and user modeling. In User models in dialog systems (pp. 35-51). Springer, Berlin, Heidelberg. Richey, R. C., Klein, J. D., & Nelson, W. A. (2004). Developmental research: Studies of instructional design and development. Handbook of research for educational communications and technology, 2, 1099-1130. Roberts, A. (2000). Mentoring revisited: A phenomenological reading of the literature. Mentoring and Tutoring, 8(2), 145-170. Sottilare, R. A., Brawner, K. W., Goldberg, B. S., & Holden, H. K. (2012). The generalized intelligent framework for tutoring (GIFT). Orlando, FL: US Army Research Laboratory–Human Research & Engineering Directorate (ARL-HRED) Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001, April). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web (pp. 285-295). Shiri, M. E., Aïmeur, A. E., & Frasson, C. (1998, August). Student modelling by case based Reasoning. In International Conference on Intelligent Tutoring Systems (pp. 394-403). Springer, Berlin, Heidelberg. Shute, V. (1994). Regarding the I in ITS: Student Modeling. Proceedings of ED-MEDIA 94. World Conference on Educational Multimedia and Hypermedia, Vancouver, BC, CANADA, 50-57. Skinner, B. F. (1958). Teaching machines. Science, 128(3330), 969-977. Sleeman, D., & Brown, J. S. (1982). Intelligent tutoring systems. London, UK: Academic Press. Stathacopoulou, R., Magoulas, G. D., & Grigoriadou, M. (1999, July). Neural network-based fuzzy modeling of the student in intelligent tutoring systems. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No. 99CH36339) (Vol. 5, pp. 3517-3521). IEEE. Suraweera, P., & Mitrovic, A. (2002, June). KERMIT: A constraint-based tutor for database modeling. In International Conference on Intelligent Tutoring Systems (pp. 377-387). Springer, Berlin, Heidelberg. Surjono, H. D., & Maltby, J. R. (2003). Adaptive educational hypermedia based on multiple student characteristics. In International Conference on Web-Based Learning (pp. 442-449). Springer, Berlin, Heidelberg. Syrris, V., & Tsobanopoulou, F. (2010). Implementation of an Online Distance Mentoring System. In Cases on Online Tutoring, Mentoring, and Educational Services: Practices and Applications (pp. 64-83). IGI Global. Şahin, M. (2010). Kısıt tabanlı Öğrenci Modeli ile Zeki Öğretim Sistemi Tasarımı (Doktora Tezi). Marmara Üniversitesi, İstanbul. Şahin, M. (2018). E-Öğrenme Ortamlarına Yönelik Öğrenme Analitiklerine Dayalı Müdahale Motoru Tasarımı ve Geliştirilmesi (Doktora Tezi). Hacettepe Üniversitesi, Ankara. Şeker, S. E. Yazılım geliştirme modelleri ve sistem/yazılım yaşam döngüsü. YBS Ansiklopedi, 2(3). 18-29. Tacoma, S., Drijvers, P., & Jeuring, J. (2021). Combined inner and outer loop feedback in an intelligent tutoring system for statistics in higher education. Journal of Computer Assisted Learning, 37(2), 319-332. Taufik, R., & Nurjanah, D. (2019, December). An Intelligent Tutoring System with Adaptive Exercises Based on a Student’s Knowledge and Misconception. In 2019 IEEE International Conference on Engineering, Technology and Education (TALE) (pp. 1-5). IEEE. Timmers, C. F. (2013). Computer-based formative assessment: variables influencing feedback behavior. (Doctoral dissertation) University of Twente, Enschede, Nederlands. Tripp, S. D., & Bichelmeyer, B. (1990). Rapid prototyping: An alternative instructional design strategy. Educational Technology Research and Development, 38(1), 31-44. Tuluk, A. (2019). Web Tabanlı Dinamik Değerlendirme Sisteminin Tasarımı, Geliştirilmesi ve Etkililiğinin Sınanması (Doktora Tezi). Hacettepe Üniversitesi, Ankara. Turan, F. (2007). Stereotip öğrenci modeli kullanarak zeki öğretim sistemi tasarımı (Yüksek Lisans Tezi). Marmara Üniversitesi, İstanbul. Vandewaetere, M., Desmet, P., & Clarebout, G. (2011). The contribution of learner characteristics in the development of computer-based adaptive learning environments. Computers in Human Behavior, 27(1), 118-130. Vanlehn, K. (2006). The behavior of tutoring systems. International journal of artificial intelligence in education, 16(3), 227-265. VanLehn, K., Niu, Z., Siler, S., & Gertner, A. S. (1998, August). Student modeling from conventional test data: A Bayesian approach without priors. In International Conference on Intelligent Tutoring Systems (pp. 434-443). Springer, Berlin, Heidelberg. Walker, E., Rummel, N., & Koedinger, K. R. (2014). Adaptive intelligent support to improve peer tutoring in algebra. International Journal of Artificial Intelligence in Education, 24(1), 33-61. Warrens, M. J. (2016). Inequalities between similarities for numerical data. Journal of Classification, 33(1), 141-148. Watson, I., & Marir, F. (1994). Case-based reasoning: A review. The knowledge engineering review, 9(4), 327-354. Wenger, E. (1987). Artificial Intelligence and Tutoring Systems. Los Altos, CA: Morgan Kaufmann. Whitemore, J. (2002). Coaching for performance: Growing people, performance and purpose. London: Nicholas Brearley. Wulfeck, W. (2009). Adapting instruction. In D. D. Schmorrow, I. V. Estabrooke, & M. Grootjen (Eds.), Foundations of augmented cognition neuroergonomics and operational neuroscience. 5th international conference, FAC 2009 (pp. 687–695). Berlin Heidelberg: Springer. Vygotsky, L. S. (1977). The development of higher psychological functions. Soviet Psychology, 15(3), 60-73. Yadav, R. S., & Singh, V. P. (2011). Modeling academic performance evaluation using soft computing techniques: A fuzzy logic approach. International Journal on Computer Science and Engineering, 3(2), 676-686. Yıldırım, A., & Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık. Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. Zakaria, M. R., Moore, A., Ashman, H., Stewart, C., & Brailsford, T. (2002, May). The hybrid model for adaptive educational hypermedia. In International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (pp. 580-585). Springer, Berlin, Heidelberg. Zapata-Rivera, J. D., & Greer, J. E. (2004). Interacting with inspectable bayesian student models. International Journal of Artificial Intelligence in Education, 14(2), 127-163. Zhiping, L., Yu, S., Tianwei, X., & Yang, L. (2012, July). The research of classical learner models in intelligent tutoring systems. In 2012 7th International Conference on Computer Science & Education (ICCSE) (pp. 1204-1207). IEEEtr_TR
dc.identifier.urihttp://hdl.handle.net/11655/25651
dc.description.abstractIn this study, it is aimed to design and develop the student model for the Intelligent Teaching System (ITS) for the learner needs. In line with this goal, the answer to the question of how an ITS design should be considering that students may have different educational needs according to their individual characteristics. For the student model, learner needs were examined in the first stage and the components of the ITS were revealed together with the review of the literature. Rapid Prototyping Model was taken as the basis in the study, since there is a software implementation. As a result, in the domain model of the created ITS, the discrete information components approach was employed, and in the tutoring model, the Weighted Jaccard Technique, one of the collaborative filtering approaches, was applied. In the student model, a hybrid student model, in which Bayesian, Layer and Stereotype student models are combined, was put forward. BaKaSt was tested in an experimental study. A total of 104 undergraduate students participated in this research. Experimental and control groups were formed for the experimental procedures. In the control group, the students used the system they chose for the instructional support for the difficulties they encountered while solving the questions. In the experimental group using BOS, it was provided by the instructional support system. As a result of the experimental procedures, it was determined that the academic success of the students using BOS was higher than the students using the alternative system.tr_TR
dc.language.isoturtr_TR
dc.publisherEğitim Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectZeki öğretim sistemleritr_TR
dc.subjectÖğrenci modelitr_TR
dc.subjectAyarlanabilir sistemlertr_TR
dc.subjectUyarlanabilir sistemlertr_TR
dc.subjectİşbirlikçi filtrelemetr_TR
dc.subjectAğırlıklandırılmış jaccardtr_TR
dc.subjectİntelligent tutoring systemstr_TR
dc.subjectStudent modeltr_TR
dc.subjectAdaptable systemstr_TR
dc.subjectAdaptive systemstr_TR
dc.subjectCollaborative filteringtr_TR
dc.subjectWeighted jaccardtr_TR
dc.subject.lcshL- Eğitimtr_TR
dc.titleZeki Öğretim Sistemlerinde Hibrit Bir Modelin Tasarlanması ve Geliştirilmesitr_TR
dc.title.alternativeDesıgn and Development of A Hybrıd Model in Intellıgent Tutorıng Systemstr_TR
dc.typeinfo:eu-repo/semantics/doctoralThesistr_TR
dc.description.ozetBu çalışma kapsamında Zeki Öğretim Sistemi (ZÖS) öğrenci modelinin tasarlanması ve geliştirilmesi amaçlanmıştır. Bu hedef doğrultusunda öğrencilerin bireysel özelliklerine göre farklı öğretimsel destek ihtiyaçları söz konusu olabileceğinden hareketle çalışmada öğrencilerin gereksinimlerine dayalı bir ZÖS tasarımı nasıl olmalıdır sorusuna gelişimsel araştırma (developmental research) yönetimi ile cevap aranmıştır. Öğrenci modeli için ilk aşamada öğrencilerin ihtiyaçları incelenmiş ve ZÖS’ün bileşenleri alan yazının taraması ile birlikte ortaya konulmuştur. Yapılan çalışmada bir yazılım gerçekleştirme söz konusu olduğu için ortaya konulacak ZÖS’ün tasarım ve geliştirilmesine yönelik yazılım geliştirme modellerinden Hızlı Prototipleme Modeli temel alınmıştır. Çalışma kapsamında öğrenci modeline odaklanılsa da ZÖS’te yer alan tüm bileşenler işe koşulmuştur. Bu sebeple geliştirilen ZÖS’ün alan modelinde ayrık bilgi bileşenler yaklaşımı, öğretici modelinde ise işbirlikçi filtreleme yöntemlerinden Ağırlıklandırılmış Jaccard tekniği kullanılmıştır. Öğrenci modelinde ise Bayes, Katman ve Stereotip (BaKaSt) öğrenci modellerinin bir arada bulunduğu hibrit bir öğrenci modeli ortaya konulmuştur. Geliştirilen ZÖS, BaKaSt olarak adlandırılmıştır. BaKaSt’ın değerlendirilmesi amacıyla deneysel bir araştırma yürütülmüş olup araştırmaya 58 kişi deney, 46 kişi kontrol grubu olmak üzere toplamda 104 lisans öğrencisi katılmıştır. Kontrol grubunda öğrenciler soru çözerken karşılaştıkları zorluklarda öğretimsel desteği kendilerinin seçtiği sistemi kullanmışlardır. BaKaSt’ı kullanan deney grubunda ise öğretimsel destek sistem tarafından sunulmuştur. Yapılan deneysel işlemler sonucu BaKaSt’ı kullanan öğrencilerin alternatif sistemi kullanan öğrencilere göre akademik başarısının daha yüksek olduğu tespit edilmiştir. Ayrıca BaKaSt’ı kullanan öğrencilerin alternatif sistemi kullanan öğrencilere göre daha fazla öğretimsel destek aldıkları ve daha az yardım arama davranışlarında bulundukları belirlenmiştir.tr_TR
dc.contributor.departmentBilgisayar ve Öğretim Teknolojileritr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2021-11-25T08:39:57Z
dc.fundingTÜBİTAKtr_TR
dc.subtypesoftwaretr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record