A Data Science Study For Determining Food Quality: An Application To Wine

Göster/Aç
Tarih
2019Yazar
Ozalp, A. E.
Askerzade, I. N.
- Captures
- Mendeley - Readers: 1
publications
0
supporting
0
mentioning
0
contrasting
0
0
0
0
0
Citing PublicationsSupportingMentioningContrasting
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Üst veri
Tüm öğe kaydını gösterÖzet
In this paper, wine quality is investigated based on physicochemical ingredients which include fixed acidity, volatile acidity, citric acid, residual sugar, chloride, free sulfur dioxide, total sulfur dioxide, density, pH, sulphate and alcohol, by ANFIS (Adaptive Neuro Fuzzy Inference System) method and by random forest algorithm which is a powerful classification algorithm. Although this study specifically investigate the relation between physicochemical ingredients and the quality of wine, the results can be adaped to determination of the quality of any food product in terms of the ingredients.