Basit öğe kaydını göster

dc.contributor.advisorAbacı, Serdar
dc.contributor.authorMalekghasemi, Soheil
dc.date.accessioned2021-01-14T08:52:16Z
dc.date.issued2021
dc.date.submitted2020-12-21
dc.identifier.citation[1] A.Y. Chang, K. Cowling, A.E. Micah, A. Chapin, C.S. Chen, G. Ikilezi, N. Sadat, G. Tsakalos, J. Wu, T. Younker, Y. Zhao, B.S. Zlavog, C. Abbafati, A.E. Ahmed, K. Alam, V. Alipour, S.M. Aljunid, M.J. Almalki, N. Alvis-Guzman, W. Ammar, C.L. Andrei, M. Anjomshoa, C.A.T. Antonio, J. Arabloo, O. Aremu, M. Ausloos, L. Avila-Burgos, A. Awasthi, M.A. Ayanore, S. Azari, N. Azzopardi-Muscat, M. Bagherzadeh, T.W. Bärnighausen, B.T. Baune, M. Bayati, Y.B. Belay, Y.A. Belay, H. Belete, D.A. Berbada, A.E. Berman, M. Beuran, A. Bijani, R. Busse, L. Cahuana-Hurtado, L.A. Cámera, F. Catalá-López, B.G. Chauhan, M.M. Constantin, C.S. Crowe, A. Cucu, K. Dalal, J.W. De Neve, S. Deiparine, F.M. Demeke, H.P. Do, M. Dubey, M. El Tantawi, S. Eskandarieh, R. Esmaeili, M. Fakhar, A.A. Fazaeli, F. Fischer, N.A. Foigt, T. Fukumoto, N. Fullman, A. Galan, A. Gamkrelidze, K.E. Gezae, A. Ghajar, A. Ghashghaee, K. Goginashvili, A. Haakenstad, H. Haghparast Bidgoli, S. Hamidi, H.L. Harb, E. Hasanpoor, H.Y. Hassen, S.I. Hay, D. Hendrie, A. Henok, I. Heredia-Pi, C. Herteliu, C.L. Hoang, M.K. Hole, E. Homaie Rad, N. Hossain, M. Hosseinzadeh, S. Hostiuc, O.S. Ilesanmi, S.S.N. Irvani, M. Jakovljevic, A. Jalali, S.L. James, J.B. Jonas, M. Jürisson, R. Kadel, B. Karami Matin, A. Kasaeian, H.K. Kasaye, M.W. Kassaw, A. Kazemi Karyani, R. Khabiri, J. Khan, M.N. Khan, Y.H. Khang, A. Kisa, K. Kissimova-Skarbek, S. Kohler, A. Koyanagi, K.J. Krohn, R. Leung, L.L. Lim, S. Lorkowski, A. Majeed, R. Malekzadeh, M. Mansourian, L.G. Mantovani, B.B. Massenburg, M. McKee, V. Mehta, A. Meretoja, T.J. Meretoja, N. Milevska Kostova, T.R. Miller, E.M. Mirrakhimov, B. Mohajer, A. Mohammad Darwesh, S. Mohammed, F. Mohebi, A.H. Mokdad, S.D. Morrison, S.M. Mousavi, S. Muthupandian, A.J. Nagarajan, V. Nangia, I. Negoi, C.T. Nguyen, H.L.T. Nguyen, S.H. Nguyen, S. Nosratnejad, O. Oladimeji, S. Olgiati, J.O. Olusanya, O.E. Onwujekwe, S.S. Otstavnov, A. Pana, D.M. Pereira, B. Piroozi, S.I. Prada, M. Qorbani, M. Rabiee, N. Rabiee, A. Rafiei, F. Rahim, V. Rahimi-Movaghar, U. Ram, C.L. Ranabhat, A. Ranta, D.L. Rawaf, S. Rawaf, S. Rezaei, E.M. Roro, A. Rostami, S. Rubino, M. Salahshoor, A.M. Samy, J. Sanabria, J.V. Santos, M.M. Santric Milicevic, B.P. Sao Jose, M. Savic, F. Schwendicke, S.G. Sepanlou, M. Sepehrimanesh, A. Sheikh, M.G. Shrime, S. Sisay, S. Soltani, M. Soofi, V. Srinivasan, R. Tabarés-Seisdedos, A. Torre, M.R. Tovani-Palone, B.X. Tran, K.B. Tran, E.A. Undurraga, P.R. Valdez, J.F.M. van Boven, V. Vargas, Y. Veisani, F.S. Violante, S.K. Vladimirov, V. Vlassov, S. Vollmer, G.T. Vu, C.D.A. Wolfe, N. Yonemoto, M.Z. Younis, M. Yousefifard, S. Bin Zaman, A. Zangeneh, E.A. Zegeye, A. Ziapour, A. Chew, C.J.L. Murray, J.L. Dieleman, Past, Present, and Future of Global Health Financing: A Review of Development Assistance, Government, out-of-Pocket, and Other Private Spending on Health for 195 Countries, 1995–2050, Lancet Publishing Group, 2019. [2] P.K. Drain, E.P. Hyle, F. Noubary, K.A. Freedberg, D. Wilson, W.R. Bishai, W. Rodriguez, I. V. Bassett, Lancet Infect. Dis. 14 (2014) 239–249. [3] J.N. Nkengasong, P. Nsubuga, O. Nwanyanwu, G.M. Gershy-Damet, G. Roscigno, M. Bulterys, B. Schoub, K.M. DeCock, D. Birx, Am. J. Clin. Pathol. 134 (2010) 368–373. [4] P.B. Luppa, C. Müller, A. Schlichtiger, H. Schlebusch, TrAC - Trends Anal. Chem. 30 (2011) 887–898. [5] S. Rosen, M.P. Fox, PLoS Med. 8 (2011). [6] K.J. Land, S. Smith, R.W. Peeling, in: Pap. Diagnostics, Springer International Publishing, 2019, pp. 1–21. [7] I. V. Jani, T.F. Peter, N. Engl. J. Med. 368 (2013) 2319–2324. [8] A.P. Dhawan, W.J. Heetderks, M. Pavel, S. Acharya, M. Akay, A. Mairal, B. Wheeler, C.C. Dacso, T. Sunder, N. Lovell, M. Gerber, M. Shah, S.G. Senthilvel, M.D. Wang, B. Bhargava, IEEE J. Transl. Eng. Heal. Med. 3 (2015). [9] A.H. FREE, E.C. ADAMS, M.L. KERCHER, H.M. FREE, M.H. COOK, Clin. Chem. 3 (1957) 163–168. [10] J.M. Singer, C.M. Plotz, Am. J. Med. 21 (1956) 888–892. [11] S.A. BERSON, R.S. YALOW, J. Clin. Invest. 38 (1959) 1996–2016. [12] R.L. Campbell, D.B. Wagner, J.P. O’Connell, Solid Phase Assay with Visual Readout, 1987. [13] R.W. Rosenstein, T.G. Bloomster, Solid Phase Assay Employing Capillary Flow, 1989. [14] A.C. Lerario, J.G. Pierce, J.L. Vaitukaiti, Endocr. Res. Commun. 5 (1978) 43–55. [15] S. Birken, E.G. Armstrongs, M.A. Gawinowicz Kolks, L.A. Cole, G.M. Agosto, A. Krichevsky, J.L. Vaitukaitis, R.E. Canfield, Endocrinology 123 (1988) 572–583. [16] A. Moody, Clin. Microbiol. Rev. 15 (2002) 66–78. [17] M. Holzinger, A. Le Goff, S. Cosnier, Front. Chem. 2 (2014) 63. [18] P. Mehrotra, J. Oral Biol. Craniofacial Res. 6 (2016) 153–159. [19] In Vitro Diagnostics (IVD) Market Insights, 2020-2027: Market Size & Share, Trends, Opportunities, Players, and More, n.d. [20] MedTech Institution, European IVD Market Statistics Report 2019, 2019. [21] S.K. Metkar, K. Girigoswami, Biocatal. Agric. Biotechnol. 17 (2019) 271–283. [22] M.N. Velasco-Garcia, T. Mottram, Biosyst. Eng. 84 (2003) 1–12. [23] M.S. Thakur, K. V. Ragavan, J. Food Sci. Technol. 50 (2013) 625–641. [24] S. Rodriguez-Mozaz, M.J.L. De Alda, M.P. Marco, D. Barceló, Talanta 65 (2005) 291–297. [25] S. Su, S. Chen, C. Fan, Green Energy Environ. 3 (2018) 97–106. [26] V. Gubala, L.F. Harris, A.J. Ricco, M.X. Tan, D.E. Williams, Anal. Chem. 84 (2012) 487–515. [27] E. Singh, H.S. Nalwa, Nanomaterial-Based Flexible and Multifunctional Sensors, 2018. [28] S.O. Kelley, C.A. Mirkin, D.R. Walt, R.F. Ismagilov, M. Toner, E.H. Sargent, Nat. Nanotechnol. 9 (2014) 969–980. [29] Q. Liu, C. Wu, H. Cai, N. Hu, J. Zhou, P. Wang, Chem. Rev. 114 (2014) 6423–6461. [30] G. Rong, S.R. Corrie, H.A. Clark, ACS Sensors 2 (2017) 327–338. [31] X. Huang, Y. Liu, B. Yung, Y. Xiong, X. Chen, ACS Nano 11 (2017) 5238–5292. [32] L.T. Bereza-Malcolm, G. Mann, A.E. Franks, ACS Synth. Biol. 4 (2015) 535–546. [33] Y. Du, S. Dong, Anal. Chem. 89 (2017) 189–215. [34] J.N. Tiwari, V. Vij, K.C. Kemp, K.S. Kim, ACS Nano 10 (2016) 46–80. [35] G. Maduraiveeran, M. Sasidharan, V. Ganesan, Biosens. Bioelectron. 103 (2018) 113–129. [36] H. Zhang, H. Zhang, A. Aldalbahi, X. Zuo, C. Fan, X. Mi, Biosens. Bioelectron. 89 (2017) 96–106. [37] C. Zhu, G. Yang, H. Li, D. Du, Y. Lin, Anal. Chem. 87 (2015) 230–249. [38] H.S. Nalwa, Nanostructured Materials and Nanotechnology: Concise Edition, 2001. [39] H.S. Nalwa, Choice Rev. Online 1–10 (2005) 42-2552a-42-2552a. [40] C.M. Cobley, J. Chen, E.C. Cho, L. V. Wang, Y. Xia, Chem. Soc. Rev. 40 (2011) 44–56. [41] S.K. Sun, H.F. Wang, X.P. Yan, Acc. Chem. Res. 51 (2018) 1131–1143. [42] S. Nandini, S. Nalini, M.B.M. Reddy, G.S. Suresh, J.S. Melo, P. Niranjana, J. Sanetuntikul, S. Shanmugam, Bioelectrochemistry 110 (2016) 79–90. [43] C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.H. Nam, M. Sindoro, H. Zhang, Chem. Rev. 117 (2017) 6225–6331. [44] E. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, ACS Appl. Mater. Interfaces 9 (2017) 3223–3245. [45] E. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, RSC Adv. 7 (2017) 28234–28290. [46] E. Singh, P. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, ACS Appl. Mater. Interfaces 11 (2019) 11061–11105. [47] R. Singh, E. Singh, H.S. Nalwa, RSC Adv. 7 (2017) 48597–48630. [48] N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews, J. Lim, H. Gao, R. Yan, P. Yang, Adv. Mater. 26 (2014) 2137–2184. [49] T.R. Fadel, D.F. Farrell, L.E. Friedersdorf, M.H. Griep, M.D. Hoover, M.A. Meador, M. Meyyappan, ACS Sensors 1 (2016) 207–216. [50] D.R. Thévenot, K. Toth, R.A. Durst, G.S. Wilson, Anal. Lett. 34 (2001) 635–659. [51] A. Chaubey, B.D. Malhotra, Biosens. Bioelectron. 17 (2002) 441–456. [52] M. Ben Ali, Y. Korpan, M. Gonchar, A. El’skaya, M.A. Maaref, N. Jaffrezic-Renault, C. Martelet, Biosens. Bioelectron. 22 (2006) 575–581. [53] V.M. Mirsky, M. Riepl, O.S. Wolfbeis, Biosens. Bioelectron. 12 (1997) 977–989. [54] A. Guiseppi-Elie, L. Lingerfelt, Top. Curr. Chem. 260 (2005) 161–186. [55] D.R. Thévenot, K. Toth, R.A. Durst, G.S. Wilson, Anal. Lett. 34 (2001) 635–659. [56] P. Chandra, Nanobiosensors for Personalized and Onsite Biomedical Diagnosis, 2016. [57] B. Eggins, Chemical Sensors and Biosensors, 2007. [58] L. Zhang, J. Wang, F. Liu, Y. Xiong, Z. Liu, D. Jiang, Y. Li, D. Tu, Y. Wang, X. Pu, RSC Adv. 7 (2017) 12576–12585. [59] G.C. Barker, I.L. Jenkins, Analyst 77 (1952) 685–695. [60] V. Mirceski, S. Skrzypek, L. Stojanov, ChemTexts 4 (2018). [61] A. Chen, B. Shah, Anal. Methods 5 (2013) 2158–2173. [62] M. Honeychurch, in: Encycl. Anal. Sci. Second Ed., Elsevier Inc., 2004, pp. 272–277. [63] S. Iijima, Nature 354 (1991) 56–58. [64] T. Pichler, Nat. Mater. 6 (2007) 332–333. [65] A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183–191. [66] J. Robertson, Mater. Sci. Eng. R Reports 37 (2002) 129–281. [67] A.C. Ferrari, J. Robertson, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 362 (2004) 2477–2512. [68] D. Haddock, T. Parker, C. Spindloe, M. Tolley, in: J. Phys. Conf. Ser., 2016. [69] S. Aisenberg, R. Chabot, Carbon N. Y. 10 (1972) 356. [70] C.S. Park, S.G. Choi, J.N. Jang, M.P. Hong, K.H. Kwon, H.H. Park, Surf. Coatings Technol. 231 (2013) 131–134. [71] M. Yunhui, T. Dehua, W. Xicheng, L. Qinghua, in: Adv. Tribol., Springer Berlin Heidelberg, 2009, pp. 915–919. [72] J. Andersson, R.A. Erck, A. Erdemir, Wear 254 (2003) 1070–1075. [73] A. Erdemir, C. Donnet, J. Phys. D. Appl. Phys. 39 (2006). [74] M.I. De Barros Bouchet, J.M. Martin, J. Avila, M. Kano, K. Yoshida, T. Tsuruda, S. Bai, Y. Higuchi, N. Ozawa, M. Kubo, M.C. Asensio, Sci. Rep. 7 (2017) 1–13. [75] S. Aisenberg, R. Chabot, J. Appl. Phys. 42 (1971) 2953–2958. [76] S. Kumar, D. Sarangi, P.N. Dixit, O.S. Panwar, R. Bhattacharyya, Thin Solid Films 346 (1999) 130–137. [77] A.A. Onoprienko, V. V. Artamonov, I.B. Yanchuk, Surf. Coatings Technol. 200 (2006) 4174–4178. [78] G. Lazar, J. Phys. Condens. Matter 13 (2001) 3011–3021. [79] P.J. Fallon, V.S. Veerasamy, C.A. Davis, J. Robertson, G.A.J. Amaratunga, W.I. Milne, J. Koskinen, Phys. Rev. B 48 (1993) 4777–4782. [80] J. Haverkamp, R.M. Mayo, M.A. Bourham, J. Narayan, C. Jin, G. Duscher, J. Appl. Phys. 93 (2003) 3627–3634. [81] S. Flege, R. Hatada, A. Hanauer, W. Ensinger, T. Morimura, K. Baba, Adv. Mater. Sci. Eng. 2017 (2017). [82] K.C. Walter, M. Nastasi, C. Munson, Surf. Coatings Technol. 93 (1997) 287–291. [83] D. Neerinck, P. Persoone, M. Sercu, A. Goel, C. Venkatraman, D. Kester, C. Halter, P. Swab, D. Bray, Thin Solid Films 317 (1998) 402–404. [84] J.C. Sánchez-López, A. Fernández, in: Tribol. Diamond-Like Carbon Film. Fundam. Appl., Springer US, 2008, pp. 311–328. [85] A. Markwitz, J. Leveneur, P. Gupta, K. Suschke, J. Futter, M. Rondeau, J. Nanomater. 2015 (2015). [86] M. Jelinek, T. Kocourek, J. Zemek, J. Mikšovský, Š. Kubinová, J. Remsa, J. Kopeček, K. Jurek, Mater. Sci. Eng. C 46 (2015) 381–386. [87] X. Shia, L. Guo, Y. Bai, L. Qiao, Appl. Surf. Sci. 257 (2011) 7238–7244. [88] D. Bootkul, N. Saenphinit, B. Supsermpol, C. Aramwit, S. Intarasiri, Appl. Surf. Sci. 310 (2014) 293–299. [89] J.Y. Jao, S. Han, L.S. Chang, Y.C. Chen, C.L. Chang, H.C. Shih, Diam. Relat. Mater. 18 (2009) 368–373. [90] G. Gassner, P.H. Mayrhofer, J. Patscheider, C. Mitterer, Thin Solid Films 515 (2007) 5411–5417. [91] P. V. Badiger, V. Desai, M.R. Ramesh, S. Joladarashi, H. Gourkar, Mater. Res. Express 6 (2019). [92] R. Paul, R. Bhar, A.K. Pal, Mater. Res. Bull. 45 (2010) 576–583. [93] C.A.G.S. Oliveira, M.F. Stein, E. Saito, H. Zanin, L.S. Vieira, L. Raniero, V.J. Trava-Airoldi, A.O. Lobo, F.R. Marciano, Diam. Relat. Mater. 53 (2015) 40–44. [94] J.Y. Jao, S. Han, C.C. Yen, Y.C. Liu, L.S. Chang, C.L. Chang, H.C. Shih, Diam. Relat. Mater. 20 (2011) 123–129. [95] Y. Yu, J. Zhang, Solid State Sci. 11 (2009) 1929–1932. [96] H. Hofsäss, H. Binder, T. Klumpp, E. Recknagel, Diam. Relat. Mater. 3 (1994) 137–142. [97] M.I. Khan, M. Sabir, Mater. Res. Express 6 (2019). [98] Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Carbon N. Y. 50 (2012) 4738–4743. [99] B. Yang, J. Chen, S. Lei, R. Guo, H. Li, S. Shi, X. Yan, Adv. Energy Mater. 8 (2018) 1702409. [100] Q. Wang, Y.F. Nie, X.Y. Chen, Z.H. Xiao, Z.J. Zhang, Electrochim. Acta 200 (2016) 247–258. [101] J. Qi, L. Jiang, Q. Tang, S. Zhu, S. Wang, B. Yi, G. Sun, Carbon N. Y. 50 (2012) 2824–2831. [102] J. Qi, L. Jiang, S. Wang, G. Sun, Appl. Catal. B Environ. 107 (2011) 95–103. [103] K.S. Novoselov, A.K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A.A. Firsov, Science (80-. ). 306 (2004) 666–669. [104] C. Cheng, S. Li, A. Thomas, N.A. Kotov, R. Haag, Chem. Rev. 117 (2017) 1826–1914. [105] A.K. Geim, K.S. Novoselov, in: Nanosci. Technol. A Collect. Rev. from Nat. Journals, World Scientific Publishing Co., 2009, pp. 11–19. [106] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22 (2010) 3906–3924. [107] P. Avouris, C. Dimitrakopoulos, Mater. Today 15 (2012) 86–97. [108] H.Y. Mao, S. Laurent, W. Chen, O. Akhavan, M. Imani, A.A. Ashkarran, M. Mahmoudi, Chem. Rev. 113 (2013) 3407–3424. [109] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature 446 (2007) 60–63. [110] Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, J. Am. Chem. Soc. 130 (2008) 5856–5857. [111] H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace, D. Li, Adv. Mater. 20 (2008) 3557–3561. [112] C. Hu, J. Xue, L. Dong, Y. Jiang, X. Wang, L. Qu, L. Dai, ACS Nano 10 (2016) 1325–1332. [113] Q. Xi, X. Chen, D.G. Evans, W. Yang, Langmuir 28 (2012) 9885–9892. [114] X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science (80-. ). 319 (2008) 1229–1232. [115] E. Singh, H.S. Nalwa, J. Nanosci. Nanotechnol. 15 (2015) 6237–6278. [116] E. Singh, H.S. Nalwa, Sci. Adv. Mater. 7 (2015) 1863–1912. [117] W. Lv, Z. Li, Y. Deng, Q.H. Yang, F. Kang, Energy Storage Mater. 2 (2016) 107–138. [118] U. Khan, T.H. Kim, H. Ryu, W. Seung, S.W. Kim, Adv. Mater. 29 (2017) 1603544. [119] F. Schwierz, Nat. Nanotechnol. 5 (2010) 487–496. [120] E. Singh, M. Meyyappan, H.S. Nalwa, ACS Appl. Mater. Interfaces 9 (2017) 34544–34586. [121] D. Iannazzo, A. Pistone, M. Salamò, S. Galvagno, R. Romeo, S. V. Giofré, C. Branca, G. Visalli, A. Di Pietro, Int. J. Pharm. 518 (2017) 185–192. [122] V. Kumar, K.H. Kim, J.W. Park, J. Hong, S. Kumar, Chem. Eng. J. 315 (2017) 210–232. [123] T.H. Han, Y. Lee, M.R. Choi, S.H. Woo, S.H. Bae, B.H. Hong, J.H. Ahn, T.W. Lee, Nat. Photonics 6 (2012) 105–110. [124] D. Chen, H. Feng, J. Li, Chem. Rev. 112 (2012) 6027–6053. [125] P.T. Yin, S. Shah, M. Chhowalla, K.B. Lee, Chem. Rev. 115 (2015) 2483–2531. [126] X. Zhao, P. Zhang, Y. Chen, Z. Su, G. Wei, Nanoscale 7 (2015) 5080–5093. [127] L. Qiu, D. Li, H.M. Cheng, ACS Nano 12 (2018) 5085–5092. [128] S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutiérrez, F. Del Monte, Chem. Soc. Rev. 42 (2013) 794–830. [129] F. Liu, Y. Piao, J.S. Choi, T.S. Seo, Biosens. Bioelectron. 50 (2013) 387–392. [130] J. Liu, S. Fu, B. Yuan, Y. Li, Z. Deng, J. Am. Chem. Soc. 132 (2010) 7279–7281. [131] M. Wang, X. Duan, Y. Xu, X. Duan, ACS Nano 10 (2016) 7231–7247. [132] W.K. Chee, H.N. Lim, N.M. Huang, I. Harrison, RSC Adv. 5 (2015) 68014–68051. [133] B. Dubertret, M. Calame, A.J. Libchaber, Nat. Biotechnol. 19 (2001) 365–370. [134] H. Imahori, S. Fukuzumi, Adv. Mater. 13 (2001) 1197–1199. [135] A. Gole, C. Dash, V. Ramakrishnan, S.R. Sainkar, A.B. Mandale, M. Rao, M. Sastry, Langmuir 17 (2001) 1674–1679. [136] J.X. Liu, N. Bao, X. Luo, S.N. Ding, ACS Omega 3 (2018) 8595–8604. [137] C.R. Raj, B.K. Jena, Chem. Commun. (2005) 2005–2007. [138] M. Brust, D. Bethell, C.J. Kiely, D.J. Schiffrin, Langmuir 14 (1998) 5425–5429. [139] W.P. Halperin, Rev. Mod. Phys. 58 (1986) 533–606. [140] Y. Li, H.J. Schluesener, S. Xu, Gold Bull. 43 (2010) 29–41. [141] L. Andrew Lyon, M.D. Musick, M.J. Natan, Anal. Chem. 70 (1998) 5177–5183. [142] A. Zengin, U. Tamer, T. Caykara, Anal. Chim. Acta 817 (2014) 33–41. [143] Z.F. Zhang, H. Cui, C.Z. Lai, L.J. Liu, Anal. Chem. 77 (2005) 3324–3329. [144] S. Mayilo, M.A. Kloster, M. Wunderlich, A. Lutich, T.A. Klar, A. Nichtl, K. Kürzinger, F.D. Stefani, J. Feldmann, Nano Lett. 9 (2009) 4558–4563. [145] X.C. Zhou, S.J. O’Shea, S.F.Y. Li, Chem. Commun. (2000) 953–954. [146] L. Lin, H. qiu Zhao, J. ru Li, J. an Tang, M. xing Duan, L. Jiang, Biochem. Biophys. Res. Commun. 274 (2000) 817–820. [147] S. Andreescu, L.A. Luck, Anal. Biochem. 375 (2008) 282–290. [148] S. Bharathi, M. Nogami, in: Analyst, The Royal Society of Chemistry, 2001, pp. 1919–1922. [149] Q. Xu, C. Mao, N.N. Liu, J.J. Zhu, J. Sheng, Biosens. Bioelectron. 22 (2006) 768–773. [150] A. Kowalczyk, B. Wagner, M. Karbarz, A.M. Nowicka, Sensors Actuators, B Chem. 208 (2015) 220–227. [151] M. Matczuk, S.S. Aleksenko, F.M. Matysik, M. Jarosz, A.R. Timerbaev, Electrophoresis 36 (2015) 1158–1163. [152] S. Hu, S. Zhang, Z. Hu, Z. Xing, X. Zhang, Anal. Chem. 79 (2007) 923–929. [153] Y. Zhang, B. Chen, M. He, B. Yang, J. Zhang, B. Hu, Anal. Chem. 86 (2014) 8082–8089. [154] A.M. López-Marzo, R. Hoyos-De-La-Torre, E. Baldrich, Anal. Chem. 90 (2018) 4010–4018. [155] X. Qin, A. Xu, L. Liu, W. Deng, C. Chen, Y. Tan, Y. Fu, Q. Xie, S. Yao, Chem. Commun. 51 (2015) 8540–8543. [156] X. Wang, D. Du, H. Dong, S. Song, K. Koh, H. Chen, Biosens. Bioelectron. 99 (2018) 375–381. [157] E. Heydari-Bafrooei, N.S. Shamszadeh, Biosens. Bioelectron. 91 (2017) 284–292. [158] W. Wang, C. Ma, Y. Li, B. Liu, L. Tan, Appl. Surf. Sci. 433 (2018) 847–854. [159] L. Shi, X. Rong, Y. Wang, S. Ding, W. Tang, Biosens. Bioelectron. 102 (2018) 41–48. [160] M. Hasanzadeh, P. Babaie, A. Mokhtarzadeh, N. Hajizadeh, S. Mahboob, Int. J. Biol. Macromol. 120 (2018) 422–430. [161] S. Yu, Y. Wang, L.P. Jiang, S. Bi, J.J. Zhu, Anal. Chem. 90 (2018) 4544–4551. [162] X. Zheng, L. Li, K. Cui, Y. Zhang, L. Zhang, S. Ge, J. Yu, ACS Appl. Mater. Interfaces 10 (2018) 3333–3340. [163] X. Cao, J. Xu, J. Xia, F. Zhang, Z. Wang, Sensors Actuators, B Chem. 255 (2018) 2136–2142. [164] G.S. Mack, Nat. Biotechnol. 25 (2007) 631–638. [165] H. Cai, H. Zhou, Y. Miao, N. Li, L. Zhao, L. Jia, Lab. Investig. 97 (2017) 530–542. [166] M. Azimzadeh, M. Rahaie, N. Nasirizadeh, M. Daneshpour, H. Naderi-Manesh, Nanomedicine Res. J. 2 (2017) 36–48. [167] R.M. Graybill, R.C. Bailey, Anal. Chem. 88 (2016) 431–450. [168] J. V. Carter, N.J. Galbraith, D. Yang, J.F. Burton, S.P. Walker, S. Galandiuk, Br. J. Cancer 116 (2017) 762–774. [169] P. Svoboda, FEBS Lett. 589 (2015) 1694–1701. [170] R.M. Graybill, R.C. Bailey, Anal. Chem. 88 (2016) 431–450. [171] A.J. Mitchell, W.D. Gray, S.S. Hayek, Y.A. Ko, S. Thomas, K. Rooney, M. Awad, J.D. Roback, A. Quyyumi, C.D. Searles, Sci. Rep. 6 (2016) 1–11. [172] R. Nedaeinia, M. Manian, M.H. Jazayeri, M. Ranjbar, R. Salehi, M. Sharifi, F. Mohaghegh, M. Goli, S.H. Jahednia, A. Avan, M. Ghayour-Mobarhan, Cancer Gene Ther. 24 (2017) 48–56. [173] R. Tavallaie, S.R.M. De Almeida, J.J. Gooding, Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 7 (2015) 580–592. [174] W. Zhou, M.Y. Fong, Y. Min, G. Somlo, L. Liu, M.R. Palomares, Y. Yu, A. Chow, S.T.F. O’Connor, A.R. Chin, Y. Yen, Y. Wang, E.G. Marcusson, P. Chu, J. Wu, X. Wu, A.X. Li, Z. Li, H. Gao, X. Ren, M.P. Boldin, P.C. Lin, S.E. Wang, Cancer Cell 25 (2014) 501–515. [175] J.K. Lee, S.R. Park, B.K. Jung, Y.K. Jeon, Y.S. Lee, M.K. Kim, Y.G. Kim, J.Y. Jang, C.W. Kim, PLoS One 8 (2013) e84256. [176] A. Bronisz, Y. Wang, M.O. Nowicki, P. Peruzzi, K.I. Ansari, D. Ogawa, L. Balaj, G. De Rienzo, M. Mineo, I. Nakano, M.C. Ostrowski, F. Hochberg, R. Weissleder, S.E. Lawler, E.A. Chiocca, J. Godlewski, Cancer Res. 74 (2014) 738–750. [177] H. Tadokoro, T. Umezu, K. Ohyashiki, T. Hirano, J.H. Ohyashiki, J. Biol. Chem. 288 (2013) 34343–34351. [178] M. Yang, J. Chen, F. Su, B. Yu, F. Su, L. Lin, Y. Liu, J.D. Huang, E. Song, Mol. Cancer 10 (2011) 1–13. [179] G. Zhuang, X. Wu, Z. Jiang, I. Kasman, J. Yao, Y. Guan, J. Oeh, Z. Modrusan, C. Bais, D. Sampath, N. Ferrara, EMBO J. 31 (2012) 3513–3523. [180] J. Li, Y. Zhang, Y. Liu, X. Dai, W. Li, X. Cai, Y. Yin, Q. Wang, Y. Xue, C. Wang, D. Li, D. Hou, X. Jiang, J. Zhang, K. Zen, X. Chen, C.Y. Zhang, J. Biol. Chem. 288 (2013) 23586–23596. [181] S.J. Pan, S.K. Zhan, B.G. Pei, Q.F. Sun, L.G. Bian, B.M. Sun, Int. J. Immunopathol. Pharmacol. 25 (2012) 871–881. [182] Y. Zhang, D. Liu, X. Chen, J. Li, L. Li, Z. Bian, F. Sun, J. Lu, Y. Yin, X. Cai, Q. Sun, K. Wang, Y. Ba, Q. Wang, D. Wang, J. Yang, P. Liu, T. Xu, Q. Yan, J. Zhang, K. Zen, C.Y. Zhang, Mol. Cell 39 (2010) 133–144. [183] N.H.H. Heegaard, A.J. Schetter, J.A. Welsh, M. Yoneda, E.D. Bowman, C.C. Harris, Int. J. Cancer 130 (2012) 1378–1386. [184] V.N. Aushev, I.B. Zborovskaya, K.K. Laktionov, N. Girard, M.P. Cros, Z. Herceg, V. Krutovskikh, PLoS One 8 (2013) e78649. [185] R.C. Zeng, W. Zhang, X.Q. Yan, Z.Q. Ye, E.D. Chen, D.P. Huang, X.H. Zhang, G.L. Huang, Med. Oncol. 30 (2013). [186] P.Y. Wang, H.T. Gong, B.F. Li, C.L. Lv, H.T. Wang, H.H. Zhou, X.X. Li, S.Y. Xie, B.F. Jiang, Oncol. Lett. 6 (2013) 1681–1686. [187] S. Zearo, E. Kim, Y. Zhu, J.T. Zhao, S.B. Sidhu, B.G. Robinson, P.S.H. Soon, BMC Cancer 14 (2014) 1–7. [188] J. Wang, S.K. Huang, M. Zhao, M. Yang, J.L. Zhong, Y.Y. Gu, H. Peng, Y.Q. Che, C.Z. Huang, PLoS One 9 (2014) e87451. [189] P. Menéndez, D. Padilla, P. Villarejo, T. Palomino, P. Nieto, J.M. Menéndez, J.A. Rodríguez-Montes, J. Surg. Oncol. 108 (2013) 369–373. [190] M. Tsujiura, S. Komatsu, D. Ichikawa, A. Shiozaki, H. Konishi, H. Takeshita, R. Moriumura, H. Nagata, T. Kawaguchi, S. Hirajima, T. Arita, H. Fujiwara, K. Okamoto, E. Otsuji, Gastric Cancer 18 (2015) 271–279. [191] C. Zhu, C. Ren, J. Han, Y. Ding, J. Du, N. Dai, J. Dai, H. Ma, Z. Hu, H. Shen, Y. Xu, G. Jin, Br. J. Cancer 110 (2014) 2291–2299. [192] Y. Fu, X. Wei, C. Tang, J. Li, R. Liu, A. Shen, Z. Wu, Oncol. Lett. 6 (2013) 1811–1815. [193] B.G. Giray, G. Emekdas, S. Tezcan, M. Ulger, M.S. Serin, O. Sezgin, E. Altintas, E.N. Tiftik, Mol. Biol. Rep. 41 (2014) 4513–4519. [194] W. Chen, H. Wang, H. Chen, S. Liu, H. Lu, D. Kong, X. Huang, Q. Kong, Z. Lu, Eur. J. Haematol. 92 (2014) 407–412. [195] K. Jones, J.P. Nourse, C. Keane, A. Bhatnagar, M.K. Gandhi, Clin. Cancer Res. 20 (2014) 253–264. [196] C. Yang, C. Wang, X. Chen, S. Chen, Y. Zhang, F. Zhi, J. Wang, L. Li, X. Zhou, N. Li, H. Pan, J. Zhang, K. Zen, C.Y. Zhang, C. Zhang, Int. J. Cancer 132 (2013) 116–127. [197] S. Komatsu, D. Ichikawa, H. Takeshita, M. Tsujiura, R. Morimura, H. Nagata, T. Kosuga, D. Iitaka, H. Konishi, A. Shiozaki, H. Fujiwara, K. Okamoto, E. Otsuji, Br. J. Cancer 105 (2011) 104–111. [198] H. Zheng, L. Zhang, Y. Zhao, D. Yang, F. Song, Y. Wen, Q. Hao, Z. Hu, W. Zhang, K. Chen, PLoS One 8 (2013) e77853. [199] A. Zhao, G. Li, M. Péoc’h, C. Genin, M. Gigante, Exp. Mol. Pathol. 94 (2013) 115–120. [200] L. Ouyang, P. Liu, S. Yang, S. Ye, W. Xu, X. Liu, Med. Oncol. 30 (2013). [201] S. Yu, Y. Liu, J. Wang, Z. Guo, Q. Zhang, F. Yu, Y. Zhang, K. Huang, Y. Li, E. Song, X.L. Zheng, H. Xiao, J. Clin. Endocrinol. Metab. 97 (2012) 2084–2092. [202] J. Yu, Y. Wang, R. Dong, X. Huang, S. Ding, H. Qiu, J. Cancer Res. Clin. Oncol. 138 (2012) 671–674. [203] A.L. Carlsen, M.T. Joergensen, S. Knudsen, O.B.S. De Muckadell, N.H.H. Heegaard, Pancreas 42 (2013) 1107–1113. [204] T. Kishimoto, H. Eguchi, H. Nagano, S. Kobayashi, H. Akita, N. Hama, H. Wada, K. Kawamoto, A. Tomokuni, Y. Tomimaru, K. Umeshita, Y. Doki, M. Mori, Cancer Sci. 104 (2013) 1626–1631. [205] F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, CA. Cancer J. Clin. 68 (2018) 394–424. [206] P.S. Mitchell, R.K. Parkin, E.M. Kroh, B.R. Fritz, S.K. Wyman, E.L. Pogosova-Agadjanyan, A. Peterson, J. Noteboom, K.C. O’Briant, A. Allen, D.W. Lin, N. Urban, C.W. Drescher, B.S. Knudsen, D.L. Stirewalt, R. Gentleman, R.L. Vessella, P.S. Nelson, D.B. Martin, M. Tewari, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 10513–10518. [207] R. Mahn, L.C. Heukamp, S. Rogenhofer, A. Von Ruecker, S.C. Müller, J. Ellinger, Urology 77 (2011) 1265.e9-1265.e16. [208] J.C. Brase, M. Johannes, T. Schlomm, A. Haese, T. Steuber, T. Beissbarth, R. Kuner, H. Sültmann, Int. J. Cancer 128 (2011) 608–616. [209] J. Wang, H. Ye, D. Zhang, K. Cheng, Y. Hu, X. Yu, L. Lu, J. Hu, C. Zuo, B. Qian, Y. Yu, S. Liu, G. Liu, C. Mao, S. Liu, Theranostics 7 (2017) 1407–1421. [210] Y. Zhang, D. Zhang, J. Lv, S. Wang, Q. Zhang, Biochem. Biophys. Res. Commun. 503 (2018) 2459–2465. [211] J. Wang, H. Ye, D. Zhang, Y. Hu, X. Yu, L. Wang, C. Zuo, Y. Yu, G. Xu, S. Liu, Cancer Cell Int. 16 (2016) 12. [212] E.A. Hunt, D. Broyles, T. Head, S.K. Deo, Annu. Rev. Anal. Chem. 8 (2015) 217–237. [213] M. Keshavarz, M. Behpour, H.A. Rafiee-Pour, RSC Adv. 5 (2015) 35651–35660. [214] C. Yongqiang, L. Zhengping, W. Yucong, F. Yongshan, Prog. Chem. 22 (2010) 1509–1517. [215] Y. Shen, F. Tian, Z. Chen, R. Li, Q. Ge, Z. Lu, Biosens. Bioelectron. 71 (2015) 322–331. [216] J. Faccini, J.B. Ruidavets, P. Cordelier, F. Martins, J.J. Maoret, V. Bongard, J. Ferrières, J. Roncalli, M. Elbaz, C. Vindis, Sci. Rep. 7 (2017) 1–10. [217] G. Cheng, Adv. Drug Deliv. Rev. 81 (2015) 75–93. [218] A. Chiadò, C. Novara, A. Lamberti, F. Geobaldo, F. Giorgis, P. Rivolo, Anal. Chem. 88 (2016) 9554–9563. [219] M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Science (80-. ). 270 (1995) 467–470. [220] E. Berezikov, G. Van Tetering, M. Verheul, J. Van De Belt, L. Van Laake, J. Vos, R. Verloop, M. Van De Wetering, V. Guryev, S. Takada, A.J. Van Zonneveld, H. Mano, R. Plasterk, E. Cuppen, Genome Res. 16 (2006) 1289–1298. [221] H.L.L. Yu, A. Maslova, I.M. Hsing, ChemElectroChem 4 (2017) 795–805. [222] G. Wu, M.H. Zaman, Bull. World Health Organ. 90 (2012) 914–920. [223] W. Zhou, X. Gao, D. Liu, X. Chen, Chem. Rev. 115 (2015) 10575–10636. [224] E. Hamidi-Asl, I. Palchetti, E. Hasheminejad, M. Mascini, Talanta 115 (2013) 74–83. [225] S. Azzouzi, W.C. Mak, K. Kor, A.P.F. Turner, M. Ben Ali, V. Beni, Biosens. Bioelectron. 92 (2017) 154–161. [226] P. Jolly, M.R. Batistuti, A. Miodek, P. Zhurauski, M. Mulato, M.A. Lindsay, P. Estrela, Sci. Rep. 6 (2016) 1–10. [227] F.F. Cheng, T.T. He, H.T. Miao, J.J. Shi, L.P. Jiang, J.J. Zhu, ACS Appl. Mater. Interfaces 7 (2015) 2979–2985. [228] F. Li, J. Peng, Q. Zheng, X. Guo, H. Tang, S. Yao, Anal. Chem. 87 (2015) 4806–4813. [229] X. Wu, Y. Chai, P. Zhang, R. Yuan, ACS Appl. Mater. Interfaces 7 (2015) 713–720. [230] S. Campuzano, M. Pedrero, J.M. Pingarrón, Compr. Anal. Chem. 77 (2017) 179–205. [231] J. Zhang, D.Z. Wu, S.X. Cai, M. Chen, Y.K. Xia, F. Wu, J.H. Chen, Biosens. Bioelectron. 75 (2016) 452–457. [232] C. Ye, M.Q. Wang, Z.F. Gao, Y. Zhang, J.L. Lei, H.Q. Luo, N.B. Li, Anal. Chem. 88 (2016) 11444–11449. [233] P. Miao, B. Wang, F. Meng, J. Yin, Y. Tang, Bioconjug. Chem. 26 (2015) 602–607. [234] R.J. Heaton, A.W. Peterson, R.M. Georgiadis, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 3701–3704. [235] S.J. Wood, Microchem. J. 47 (1993) 330–337. [236] W. Wang, Int. J. Electrochem. Sci. 15 (2020) 4631–4639. [237] S. Shin Low, Y. Pan, D. Ji, Y. Li, Y. Lu, Y. He, Q. Chen, Q. Liu, Sensors Actuators, B Chem. 308 (2020) 127718. [238] M. Zouari, S. Campuzano, J.M. Pingarrón, N. Raouafi, Anal. Chim. Acta 1104 (2020) 188–198. [239] R.M. Graybill, R.C. Bailey, Anal. Chem. 88 (2016) 431–450. [240] A.A. Ismail, F.R. van de Voort, J. Sedman, Tech. Instrum. Anal. Chem. 18 (1997) 93–139. [241] G. Greczynski, L. Hultman, Prog. Mater. Sci. 107 (2020) 100591. [242] G.S. Bumbrah, R.M. Sharma, Egypt. J. Forensic Sci. 6 (2016) 209–215. [243] J. Epp, in: Mater. Charact. Using Nondestruct. Eval. Methods, Woodhead Publishing, 2016, pp. 81–124. [244] M. Kannan, in: 2018, pp. 93–101. [245] C. Hu, X. Bai, Y. Wang, W. Jin, X. Zhang, S. Hu, Anal. Chem. 84 (2012) 3745–3750. [246] S. Kumar, J. Aaron, K. Sokolov, Nat. Protoc. 3 (2008) 314–320. [247] X. Mao, Y. Ma, A. Zhang, L. Zhang, L. Zeng, G. Liu, Anal. Chem. 81 (2009) 1660–1668. [248] K.R. Brown, L.A. Lyon, A.P. Fox, B.D. Reiss, M.J. Natan, Chem. Mater. 12 (2000) 314–323. [249] M.D. Musick, D.J. Peña, S.L. Botsko, T.M. McEvoy, J.N. Richardson, M.J. Natan, Langmuir 15 (1999) 844–849. [250] K.R. Brown, M.J. Natan, J. Chem. Soc., Chem. Commun 14 (1996) 2881–2885. [251] B. S. Takale, M. Bao, Y. Yamamoto, in: PATAI’S Chem. Funct. Groups, John Wiley & Sons, Ltd, 2014, pp. 1–52. [252] G. Dyker, W. Stirner, G. Henkel, M. Köckerling, Tetrahedron Lett. 40 (1999) 7457–7458. [253] A.K.L. Teo, C. Le Lim, Z. Gao, Electrochim. Acta 126 (2014) 19–30. [254] E.A. Lusi, M. Passamano, P. Guarascio, A. Scarpa, L. Schiavo, Anal. Chem. 81 (2009) 2819–2822. [255] Z. Gao, H. Deng, W. Shen, Y. Ren, Anal. Chem. 85 (2013) 1624–1630. [256] Y. Ren, H. Deng, W. Shen, Z. Gao, Anal. Chem. 85 (2013) 4784–4789. [257] W. Shen, H. Deng, Y. Ren, Z. Gao, Biosens. Bioelectron. 44 (2013) 171–176. [258] M.J. Rosen, X.Y. Hua, J. Colloid Interface Sci. 139 (1990) 397–407. [259] A.M. Zaitsev, A.M. Zaitsev, in: Opt. Prop. Diam., Springer Berlin Heidelberg, 2001, pp. 19–68. [260] J.L. Warren, J.L. Yarnell, G. Dolling, R.A. Cowley, Phys. Rev. 158 (1967) 805–808. [261] P. Bou, J. Electrochem. Soc. 138 (1991) 2991. [262] J.L. Yarnell, J.L. Warren, R.G. Wenzel, Phys. Rev. Lett. 13 (1964) 13–15. [263] M.S. Dresselhaus, G. Dresselhaus, in: 1982, pp. 3–57. [264] J.C.A. and P.K. Robert E. Clausing, Linda L. Horton, Diamond and Diamond-like Carbon Films and Coatings, 1991. [265] A.M. Zaitsev, Optical Properties of Diamond: A Data Handbook, Springer, 2001. [266] R.P. Mildren, in: R.P. Mildren, Rabeau James R (Eds.), Opt. Eng. Diam., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013, pp. 1–34. [267] P. Couderc, Y. Catherine, Thin Solid Films 146 (1987) 93–107. [268] F. Zhao, A. Afandi, R.B. Jackman, Appl. Phys. Lett. 106 (2015) 102108. [269] W. Zhuang, H. Li, W. Li, X. Fan, J. He, Z. Cai, W. Fu, G. Zhang, S. Wan, M. Zhu, Appl. Surf. Sci. 478 (2019) 661–679. [270] M. Panda, G. Mangamma, R. Krishnan, K.K. Madapu, D.N.G. Krishna, S. Dash, A.K. Tyagi, RSC Adv. 6 (2016) 6016–6028. [271] X. Yue, S. Huang, Y. Jin, P.K. Shen, Catal. Sci. Technol. 7 (2017) 2228–2235. [272] M. Panda, R. Krishnan, N.G. Krishna, S. Amirthapandian, P. Magudapathy, M. Kamruddin, Ceram. Int. 45 (2019) 8847–8855. [273] N. Triroj, R. Saensak, S. Porntheeraphat, B. Paosawatyanyong, V. Amornkitbamrung, Anal. Chem. 92 (2020) 3650–3657. [274] A.J. Young, M. Sauer, G.M.D.M. Rubio, A. Sato, A. Foelske, C.J. Serpell, J.M. Chin, M.R. Reithofer, Nanoscale 11 (2019) 8327–8333. [275] A.C. Ferrari, J. Robertson, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 362 (2004) 2477–2512. [276] A. Ferrari, J. Robertson, Phys. Rev. B - Condens. Matter Mater. Phys. 61 (2000) 14095–14107. [277] J. Robertson, Mater. Sci. Eng. R Reports 37 (2002) 129–281. [278] D.S. Knight, W.B. White, J. Mater. Res. 4 (1989) 385–393. [279] R. Diamant, E. Jimenez, E. Haro-Poniatowski, L. Ponce, M. Fernandez-Guasti, J.C. Alonso, Diam. Relat. Mater. 8 (1999) 1277–1284. [280] G. Nurk, J. Eskusson, R. Jaaniso, E. Lust, J. Solid State Electrochem. 7 (2003) 421–434. [281] A. Singha, A. Ghosh, A. Roy, N.R. Ray, J. Appl. Phys. 100 (2006) 044910. [282] J. Fayos, J. Solid State Chem. 148 (1999) 278–285. [283] S. Drewniak, R. Muzyka, A. Stolarczyk, T. Pustelny, M. Kotyczka-Morańska, M. Setkiewicz, Sensors (Switzerland) 16 (2016) 103. [284] A. Grill, Thin Solid Films 355 (1999) 189–193. [285] M.I. Khan, M. Sabir, Mater. Res. Express 6 (2019). [286] F.M. Wang, M.W. Chen, Q.B. Lai, Thin Solid Films 518 (2010) 3332–3336. [287] K.A. Khan, M.I. Khan, Mater. Res. Express 6 (2019). [288] S. Flege, R. Hatada, M. Hoefling, A. Hanauer, A. Abel, K. Baba, W. Ensinger, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 365 (2015) 357–361. [289] N. Triroj, R. Saensak, S. Porntheeraphat, B. Paosawatyanyong, V. Amornkitbamrung, Anal. Chem. 92 (2020) 3650–3657. [290] R. Dey, S. Dolai, S. Hussain, R. Bhar, A.K. Pal, Diam. Relat. Mater. 82 (2018) 70–78. [291] S. Nakao, T. Kimura, T. Suyama, K. Azuma, Diam. Relat. Mater. 77 (2017) 122–130. [292] M. Tsuchiya, K. Murakami, K. Magara, K. Nakamura, H. Ohashi, K. Tokuda, T. Takami, H. Ogasawara, Y. Enta, Y. Suzuki, S. Ando, H. Nakazawa, Jpn. J. Appl. Phys. 55 (2016) 065502. [293] Y.H. Lin, H. Da Lin, C.K. Liu, M.W. Huang, Y.C. Chen, J.R. Chen, H.C. Shih, Thin Solid Films 518 (2009) 1503–1507. [294] Y.J. Jo, T.F. Zhang, M.J. Son, K.H. Kim, Appl. Surf. Sci. 433 (2018) 1184–1191. [295] H. Yin, Y. Zhou, H. Zhang, X. Meng, S. Ai, Biosens. Bioelectron. 33 (2012) 247–253. [296] M. Cho, S. Lee, S.Y. Han, J.Y. Park, M.A. Rahman, Y.B. Shim, C. Ban, Nucleic Acids Res. 34 (2006) e75–e75. [297] S. Han, W. Liu, S. Yang, R. Wang, ACS Omega 4 (2019) 11025–11031. [298] H. Zhang, M. Fan, J. Jiang, Q. Shen, C. Cai, J. Shen, Anal. Chim. Acta 1064 (2019) 33–39. [299] A. Cui, J. Zhang, W. Bai, H. Sun, L. Bao, F. Ma, Y. Li, Biosens. Bioelectron. 144 (2019) 111664. [300] L. Tian, K. Qian, J. Qi, Q. Liu, C. Yao, W. Song, Y. Wang, Biosens. Bioelectron. 99 (2018) 564–570. [301] Y.T. Yaman, O.A. Vural, G. Bolat, S. Abaci, Sensors Actuators, B Chem. 320 (2020) 128343. [302] Y. Song, T. Xu, L.P. Xu, X. Zhang, Chem. Commun. 55 (2019) 1742–1745. [303] S. Han, W. Liu, S. Yang, R. Wang, ACS Omega 4 (2019) 11025–11031. [304] A. Bharti, N. Agnihotri, N. Prabhakar, Microchim. Acta 186 (2019) 1–11. [305] M. Kamal Masud, M.N. Islam, M.H. Haque, S. Tanaka, V. Gopalan, G. Alici, N.T. Nguyen, A.K. Lam, M.S.A. Hossain, Y. Yamauchi, M.J.A. Shiddiky, Chem. Commun. 53 (2017) 8231–8234. [306] H.V. Tran, N.D. Nguyen, B. Piro, L.T. Tran, Anal. Methods 9 (2017) 2696–2702. [307] M. Azimzadeh, N. Nasirizadeh, M. Rahaie, H. Naderi-Manesh, RSC Adv. 7 (2017) 55709–55719. [308] M. Wang, W. Chen, L. Tang, R. Yan, P. Miao, Anal. Chim. Acta 1107 (2020) 23–29. [309] P. Fu, S. Xing, M. Xu, Y. Zhao, C. Zhao, Sensors Actuators, B Chem. 305 (2020) 127545. [310] M. Zouari, S. Campuzano, J.M. Pingarrón, N. Raouafi, Microchim. Acta 187 (2020) 1–11. [311] T. Meng, D. Zhao, H. Ye, Y. Feng, H. Wang, Y. Zhang, J. Colloid Interface Sci. 578 (2020) 164–170. [312] R. Ren, Q. Bi, R. Yuan, Y. Xiang, Sensors Actuators, B Chem. 304 (2020) 127068. [313] L. Zhou, Y. Wang, C. Yang, H. Xu, J. Luo, W. Zhang, X. Tang, S. Yang, W. Fu, K. Chang, M. Chen, Biosens. Bioelectron. 126 (2019) 657–663. [314] M. Liang, M. Pan, J. Hu, F. Wang, X. Liu, ChemElectroChem 5 (2018) 1380–1386. [315] D. Zhu, W. Liu, D. Zhao, Q. Hao, J. Li, J. Huang, J. Shi, J. Chao, S. Su, L. Wang, ACS Appl. Mater. Interfaces 9 (2017) 35597–35603. [316] J. Mandli, H. Mohammadi, A. Amine, Bioelectrochemistry 116 (2017) 17–23. [317] J. Hu, J. Hu, Z. Li, H. Zhang, R. Liu, Y. Lv, Anal. Chem. 92 (2020) 8523–8529. [318] M.L. Mujica, Y. Zhang, F. Bédioui, F. Gutiérrez, G. Rivas, Anal. Bioanal. Chem. 412 (2020) 3539–3546. [319] J.A. Ribeiro, M.G.F. Sales, C.M. Pereira, Sensors Actuators, B Chem. 316 (2020) 128129. [320] T. Fan, Y. Mao, F. Liu, W. Zhang, J.S. Lin, J. Yin, Y. Tan, X. Huang, Y. Jiang, Talanta 200 (2019) 480–486. [321] W.H. Kim, J.U. Lee, S. Song, S. Kim, Y.J. Choi, S.J. Sim, Analyst 144 (2019) 1768–1776. [322] X. Miao, Z. Cheng, H. Ma, Z. Li, N. Xue, P. Wang, Anal. Chem. 90 (2018) 1098–1103. [323] Y.S. Borghei, M. Hosseini, M.R. Ganjali, H. Ju, Microchim. Acta 185 (2018) 1–9. [324] D. Ma, C. Huang, J. Zheng, J. Tang, J. Li, J. Yang, R. Yang, Biosens. Bioelectron. 101 (2018) 167–173. [325] H. Kim, S. Kang, K.S. Park, H.G. Park, Sensors Actuators, B Chem. 260 (2018) 140–145. [326] F. Xu, L. Luo, H. Shi, X. He, Y. Lei, J. Tang, D. He, Z. Qiao, K. Wang, Anal. Chim. Acta 1010 (2018) 54–61. [327] K. Hao, Y. He, H. Lu, S. Pu, Y. Zhang, H. Dong, X. Zhang, Anal. Chim. Acta 954 (2017) 114–120. [328] Q. Li, Q. Wang, X. Yang, K. Wang, H. Zhang, W. Nie, Talanta 174 (2017) 521–526. [329] K. Zhang, K. Wang, X. Zhu, F. Xu, M. Xie, Biosens. Bioelectron. 87 (2017) 358–364. [330] A. Movahedpour, N. Ahmadi, Y. Ghasemi, A. Savardashtaki, Z. Shabaninejad, J. Cell. Biochem. 120 (2019) 16316–16329. [331] L. Jamali, R. Tofigh, S. Tutunchi, G. Panahi, F. Borhani, S. Akhavan, P. Nourmohammadi, S.M.H. Ghaderian, M. Rasouli, H. Mirzaei, J. Cell. Physiol. 233 (2018) 8538–8550. [332] E.K.O. Ng, R. Li, V.Y. Shin, H.C. Jin, C.P.H. Leung, E.S.K. Ma, R. Pang, D. Chua, K.M. Chu, W.L. Law, S.Y.K. Law, R.T.P. Poon, A. Kwong, PLoS One 8 (2013) e53141. [333] Y. Jin, Y.S. Wong, B.K.P. Goh, C.Y. Chan, P.C. Cheow, P.K.H. Chow, T.K.H. Lim, G.B.B. Goh, T.L. Krishnamoorthy, R. Kumar, T.P. Ng, S.S. Chong, H.H. Tan, A.Y.F. Chung, L.L.P.J. Ooi, J.P.E. Chang, C.K. Tan, C.G.L. Lee, Sci. Rep. 9 (2019). [334] M. Valladares-Ayerbes, M. Reboredo, V. Medina-Villaamil, P. Iglesias-Díaz, M.J. Lorenzo-Patiño, M. Haz, I. Santamarina, M. Blanco, J. Fernández-Tajes, M. Quindós, A. Carral, A. Figueroa, L.M. Antón-Aparicio, L. Calvo, J. Transl. Med. 10 (2012) 186. [335] K. Tanaka, H. Miyata, M. Yamasaki, K. Sugimura, S. Takahashi, Y. Kurokawa, K. Nakajima, S. Takiguchi, M. Mori, Y. Doki, Ann. Surg. Oncol. 20 (2013) 607–615. [336] W.H. yu. Paik, B.J. u. Song, H.W. o. Kim, H.R. e. Kim, J.H. yeo. Hwang, Korean J. Gastroenterol. 66 (2015) 215–220. [337] R. Shi, H. Xiao, T. Yang, L. Chang, Y. Tian, B. Wu, H. Xu, Front. Med. 8 (2014) 456–463. [338] J. V. Carter, S.J. O’Brien, J.F. Burton, B.G. Oxford, V. Stephen, J. Hallion, C. Bishop, N.J. Galbraith, M.R. Eichenberger, H. Sarojini, E. Hattab, S. Galandiuk, Oncol. Lett. 18 (2019) 3994–4007. [339] L.L. Aylward, in: J. Nriagu (Ed.), Encycl. Environ. Heal., Second Edi, Elsevier, Oxford, 2019, pp. 376–385. [340] X. Wu, Y. Chai, P. Zhang, R. Yuan, Appl. Mater. Interfaces 7 (2015) 713–720. [341] C. Yang, K. Shi, B. Dou, Y. Xiang, Y. Chai, R. Yuan, ACS Appl. Mater. Interfaces 7 (2015) 1188–1193.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/23276
dc.description.abstractThis study aims to fabricate electrodes with properties of both gold and diamond-like carbon (DLC) thin films for in vitro diagnostic system applications for the first time. A specific self-assembly method was used to prepare conductive gold nanonetwork bonded diamond-like carbon nanofilm (CGN-DLC) electrodes with multifunctional surface and bulk properties. The nanofilms possessed a relatively high sp3 carbon fraction, a high electrical conductivity (1,4 × 103 S.cm-1) and optical band gaps of 1,42 eV and 3,87 eV. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) revealed the presence of carboxylic acid functional groups on the DLC surface. High-resolution transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), RAMAN spectroscopy, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EİS) were used to help qualitative and quantitative assessing of CGN-DLC nanofilms. TEM and SEM analyzes demonstrated the successful use of trisodium citrate and gold nanoparticles to produce CGN-DLC nanofilms. The XRD spectrum indicated the Au (111), Au (200), Au (220) and Au (311) peaks of the gold nanonetwork and the C (002), C (032) and C (111) peaks of the DLC structure. The RAMAN spectroscopy demonstrated the D and G band peaks of the diamond-like carbon structure at 1388.6 cm-1 and 1568.0 cm-1, respectively. The sp3 content of DLC film was found approximately 30 %, as well. CV and EİS demonstrated that CGN-DLC nanofilms can be used as effective electrodes in biosensor applications. In the presented thesis, a sustainable method is shown for obtaining CGN-DLC nanofilms without using harmful chemicals or physical methods. To evaluate the performance of CGN-DLC nanofilm, it was coated on a pencil graphite electrode (PGE) and used in an electrochemical biosensor for the sensitive detection of miR-NA-410-5p as a prostate cancer biomarker. No amplifica-tion and/or labeling process was used on this biosensor platform. The prepared biosensor platform was detected target miRNAs using differential pulse voltammetry (DPV) method with a linear range of 0.3 fM to 100 fM and a detection limit (LOD) of 0.27 fM. As such, the CGN-DLC nanofilm is expected to find wide application areas such as bio/sensors, photovoltaics, transistors, amplifiers, energy storage elements and biomedical.tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectElmas benzeri karbontr_TR
dc.subjectAltın nanoağtr_TR
dc.subjectKendiliğinden düzenlenmetr_TR
dc.subjectİnce filmtr_TR
dc.subjectElektrottr_TR
dc.subjectElektrokimyasal biosensörtr_TR
dc.subject.lcshBiyokimya. Hücre biyolojisi. Hücre genetiğitr_TR
dc.titleİn Vitro Diyagnostik Sistemlerde Kullanılmak Üzere Yeni Nesil Elektrotların Tasarımı ve Geliştirilmesitr_TR
dc.title.alternativeDesıgn and Development of New Generatıon Electrodes for Use in In Vıtro Dıagnostıc Systems
dc.typeinfo:eu-repo/semantics/doctoralThesistr_TR
dc.description.ozetBu çalışmada, in vitro diyagnostik sistem uygulamaları için altın ve elmas benzeri karbon (DLC) ince film özelliklerine sahip elektrotların ilk kez üretilmesi amaçlanmıştır. Çok fonksiyonlu yüzey ve yığın özelliklerine sahip, iletken altın nanoağ bağlı elmas benzeri karbon nanofilm (CGN-DLC) elektrotların hazırlanması için kendiliğinden düzenlenme (self-assembly) yöntemi kullanılmıştır. Geliştirilen nanofilmlerin nispeten yüksek bir sp3 karbon dağılımına, 1,4 × 103 S.cm-1 elektrik iletkenliğine ve 1,42 eV ve 3,87 eV optik bant aralıklarına sahip oldukları bulunmuştur. Azalan tam yansıma-fourier dönüşümü kızılötesi (ATR-FTIR) spektroskopisi ve X-ışını fotoelektron spektroskopisi (XPS) analizleri, DLC yüzeyinde karboksilik asit fonksiyonel gruplarının varlığını ortaya çıkarmıştır. CGN-DLC nanofilmlerinin kalitatif ve kantitatif olarak değerlendirilmesinde yüksek çözünürlüklü geçirimli elektron mikroskopisi (TEM), taramalı elektron mikroskopisi (SEM), X-ışını kırınımı (XRD), RAMAN spektroskopisi, dönüşümlü voltametri (CV) ve elektrokimyasal empedans spektroskopisi (EİS) kullanılmıştır. TEM ve SEM analizleri, CGN-DLC nanofilmlerini üretmek için trisodyum sitrat ve altın nanopartiküllerinin başarılı bir şekilde kullanıldığını göstermiştir. XRD spektrumundan, altın nanoağ yapısına ait Au (111), Au (200), Au (220) ve Au (311) pikleri ve DLC yapısına ait C (002), C (032) ve C (111) pikleri belirlenmiştir. RAMAN spektroskopisi elmas benzeri karbon yapının D ve G bandı piklerini sırasıyla 1388,6 cm-1 ve 1568,0 cm-1 konumlarında göstermiştir. DLC filminin sp3 içeriği de yaklaşık % 30 bulunmuştur. CV ve EİS, CGN-DLC nanofilmlerinin biyosensör uygulamalarında etkili modifiye edici ajan olarak kullanılabileceğini göstermiştir. Sunulan tez kapsamında, zararlı kimyasallar veya fiziksel yöntemler kullanılmadan CGN-DLC nanofilmlerinin elde edilmesi için sürdürülebilir bir yöntem gösterilmiştir. CGN-DLC nanofilm performansını değerlendirmek için, sentezlenen nanofilm kalem grafit elektrot (PGE) üzerine modifiye edilmiş ve prostat kanseri biyobelirteci olan miRNA-410-5p'nin hassas ve seçici olarak elektrokimyasal tayini gerçekleştirilmiştir. Tasarlanan biyosensör platform üzerinde herhangi bir amplifikasyon ve/veya etiketleme işlemi kullanılmamıştır. Hazırlanan biyosensör platformu, 0,3 fM ile 100 fM doğrusal aralığı ve 0,27 fM'lik bir tayin sınırı (LOD) ile diferansiyel puls voltametri (DPV) yöntemi kullanılarak hedef miRNA'ları saptamıştır. Sonuç olarak, sentezlenen CGN-DLC nanofilminin biyo/sensörler, fotovoltaikler, transistörler, amplifikatörler, enerji depolama unsurları ve biyomedikal gibi geniş uygulama alanlarında kullanılması gelecek çalışmalarda beklenmektedir.tr_TR
dc.contributor.departmentBiyomühendisliktr_TR
dc.embargo.terms6 aytr_TR
dc.embargo.lift2021-07-19T08:52:16Z
dc.fundingYoktr_TR
dc.subtypeannotationtr_TR
dc.subtypeimagetr_TR
dc.subtypeprojecttr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess