dc.identifier.citation | [1] Z. Fereshteh, Freeze-drying technologies for 3D scaffold engineering, Functional 3D Tissue Engineering Scaffolds, Elsevier, Chapter 7, pp. 151-174, 2018.
[2] M. Costantini, A. Barbetta, Gas foaming technologies for 3D scaffold engineering, Functional 3D Tissue Engineering Scaffolds, Elsevier, Chapter 6, pp. 127-149, 2018.
[3] S.H. Barbanti, C.A.C. Zavaglia, E.A.d.R. Duek, Effect of salt leaching on PCL and PLGA (50/50) resorbable scaffolds, Materials Research, 11 (2008) 75-80.
[4] J. Reignier, M.A. Huneault, Preparation of interconnected poly (ε-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching, Polymer, 47 (2006) 4703-4717.
[5] R.C. Dutta, M. Dey, A.K. Dutta, B. Basu, Competent processing techniques for scaffolds in tissue engineering, Biotechnology Advances, 35 (2017) 240-250.
[6] Z. Ma, M. Kotaki, R. Inai, S. Ramakrishna, Potential of nanofiber matrix as tissue-engineering scaffolds, Tissue engineering, 11 (2005) 101-109.
[7] S. Mwenifumbo, M.M. Stevens, ECM interactions with cells from the macro-to nanoscale, Biomedical nanostructures, 1 (2007) 225-260.
[8] R. Murugan, S. Ramakrishna, Nano-featured scaffolds for tissue engineering: a review of spinning methodologies, Tissue engineering, 12 (2006) 435-447.
[9] N.M. Kazaroğlu, Yara Örtüleri İçin Alternatif Doku İskeleleri: In vitro Çalışmalar, Yüksek Lisans Tezi, Başkent Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2009.
[10] I. Smith, X. Liu, L. Smith, P. Ma, Nanostructured polymer scaffolds for tissue engineering and regenerative medicine, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1 (2009) 226-236.
[11] C.A. Bonino, K. Efimenko, S.I. Jeong, M.D. Krebs, E. Alsberg, S.A. Khan, Three‐dimensional electrospun alginate nanofiber mats via tailored charge repulsions, Small, 8 (2012) 1928-1936.
[12] M. Afshari, Electrospun nanofibers, Woodhead Publishing, 2016.
[13] J.J.P.R. Zeleny, The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces, 3 (1914) 69-91.
[14] P. Bhattarai, K. Thapa, R. Basnet, S. Sharma, Electrospinning: how to produce nanofibers using most inexpensive technique? An insight into the real challenges of electrospinning such nanofibers and its application areas, International Journal of Biomedical and Advance Research, 5 (2014) 401-405.
[15] Anonim, the first use of "electrospinning" term, http://www.internano.org/nms/2011/doshi (Erişim tarihi: 12.01.2019), 2011.
[16] J. Doshi, D.H. Reneker, Electrospinning process and applications of electrospun fibers, Journal of Electrostatics, 35 (1995) 151-160.
[17] N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique, Biotechnology Advances, 28 (2010) 325-347.
[18] D.H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology, 7 (1996) 216-223.
[19] T. Subbiah, G.S. Bhat, R.W. Tock, S. Parameswaran, S.S. Ramkumar, Electrospinning of nanofibers, Journal of applied polymer science, 96 (2005) 557-569.
[20] B. Sun, Y. Long, H. Zhang, M. Li, J. Duvail, X. Jiang, H. Yin, Advances in three-dimensional nanofibrous macrostructures via electrospinning, Progress in Polymer Science, 39 (2014) 862-890.
[21] S.R. Merritt, A.A. Exner, Z. Lee, H.A. Von Recum, Electrospinning and imaging, Advanced Engineering Materials, 14 (2012) B266-B278.
[22] Q.P. Pham, U. Sharma, A.G. Mikos, Electrospun poly (ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration, Biomacromolecules, 7 (2006) 2796-2805.
[23] B.M. Baker, A.O. Gee, R.B. Metter, A.S. Nathan, R.A. Marklein, J.A. Burdick, R.L. Mauck, The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers, Biomaterials, 29 (2008) 2348-2358.
[24] W. Teo, S. Liao, C. Chan, S. Ramakrishna, Remodeling of three-dimensional hierarchically organized nanofibrous assemblies, Current Nanoscience, 4 (2008) 361-369.
[25] M. Yousefzadeh, M. Latifi, M. Amani-Tehran, W.-E. Teo, S. Ramakrishna, A Note on the 3D Structural Design of Electrospun Nanofibers, Journal of Engineered Fabrics and Fibers, 7 (2012) 17-23.
[26] B.A. Blakeney, A. Tambralli, J.M. Anderson, A. Andukuri, D.-J. Lim, D.R. Dean, H.-W. Jun, Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold, Biomaterials, 32 (2011) 1583-1590.
[27] T.G. Kim, H.J. Chung, T.G.J.A.b. Park, Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles, 4 (2008) 1611-1619.
[28] J. Nam, Y. Huang, S. Agarwal, J. Lannutti, Improved cellular infiltration in electrospun fiber via engineered porosity, Tissue engineering, 13 (2007) 2249-2257.
[29] K. Wang, M. Xu, M. Zhu, H. Su, H. Wang, D. Kong, L. Wang, Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO‐microparticles to enhance cellular infiltration, Journal of Biomedical Materials Research Part A, 101 (2013) 3474-3481.
[30] J. Jiang, M.A. Carlson, M.J. Teusink, H. Wang, M.R. MacEwan, J. Xie, Expanding two-dimensional electrospun nanofiber membranes in the third dimension by a modified gas-foaming technique, ACS Biomaterials Science & Engineering, 1 (2015) 991-1001.
[31] M.K. Joshi, H.R. Pant, A.P. Tiwari, C.H. Park, C.S.J.C.E.J. Kim, Multi-layered macroporous three-dimensional nanofibrous scaffold via a novel gas foaming technique, 275 (2015) 79-88.
[32] G. Kim, W. Kim, Highly porous 3D nanofiber scaffold using an electrospinning technique, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 81 (2007) 104-110.
[33] P.I. Gouma, D. Han, Electrospun Bioscaffolds That Mimic the Topology of Extracellular Matrix, Nanomedicine in Cancer, (2017) 185-196.
[34] M. Deng, S.G. Kumbar, L.S. Nair, A.L. Weikel, H.R. Allcock, C.T. Laurencin, Biomimetic Structures: Biological Implications of Dipeptide‐Substituted Polyphosphazene–Polyester Blend Nanofiber Matrices for Load‐Bearing Bone Regeneration, Advanced Functional Materials, 21 (2011) 2641-2651.
[35] I.K. Shim, M.R. Jung, K.H. Kim, Y.J. Seol, Y.J. Park, W.H. Park, S.J. Lee, Novel three‐dimensional scaffolds of poly (L‐lactic acid) microfibers using electrospinning and mechanical expansion: Fabrication and bone regeneration, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 95 (2010) 150-160.
[36] L.H. Leung, S. Fan, H.E. Naguib, Fabrication of 3D electrospun structures from poly (lactide‐co‐glycolide acid)–nano‐hydroxyapatite composites, Journal of Polymer Science Part B: Polymer Physics, 50 (2012) 242-249.
[37] B.L.-P. Lee, H. Jeon, A. Wang, Z. Yan, J. Yu, C. Grigoropoulos, S. Li, Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds, Acta biomaterialia, 8 (2012) 2648-2658.
[38] M.S. Kim, G.H. Kim, Highly porous electrospun 3D polycaprolactone/β-TCP biocomposites for tissue regeneration, Materials Letters, 120 (2014) 246-250.
[39] J.M. Ameer, N. Kasoju, Strategies to Tune Electrospun Scaffold Porosity for Effective Cell Response in Tissue Engineering, Journal of functional biomaterials, 10 (2019) 30.
[40] M.J. McClure, P.S. Wolfe, D.G. Simpson, S.A. Sell, G.L. Bowlin, The use of air-flow impedance to control fiber deposition patterns during electrospinning, Biomaterials, 33 (2012) 771-779.
[41] A. Yin, J. Li, G.L. Bowlin, D. Li, I.A. Rodriguez, J. Wang, T. Wu, H.A. EI-Hamshary, S.S. Al-Deyab, X. Mo, Fabrication of cell penetration enhanced poly (l-lactic acid-co-Ɛ-caprolactone)/silk vascular scaffolds utilizing air-impedance electrospinning, Colloids and Surfaces B: Biointerfaces, 120 (2014) 47-54.
[42] X. Zhu, W. Cui, X. Li, Y. Jin, Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering, Biomacromolecules, 9 (2008) 1795-1801.
[43] O.D. Schneider, F. Weber, T.J. Brunner, S. Loher, M. Ehrbar, P.R. Schmidlin, W.J. Stark, In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects, Acta Biomaterialia, 5 (2009) 1775-1784.
[44] M.F. Leong, M.Z. Rasheed, T.C. Lim, K.S. Chian, In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly (d, l‐lactide) scaffold fabricated by cryogenic electrospinning technique, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 91 (2009) 231-240.
[45] M. Simonet, O.D. Schneider, P. Neuenschwander, W.J. Stark, Ultraporous 3D polymer meshes by low‐temperature electrospinning: use of ice crystals as a removable void template, Polymer Engineering & Science, 47 (2007) 2020-2026.
[46] T.G. Kim, H.J. Chung, T.G. Park, Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles, Acta biomaterialia, 4 (2008) 1611-1619.
[47] Y. Ji, K. Ghosh, X.Z. Shu, B. Li, J.C. Sokolov, G.D. Prestwich, R.A. Clark, M.H. Rafailovich, Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds, Biomaterials, 27 (2006) 3782-3792.
[48] B. Subia, J. Kundu, S. Kundu, Biomaterial scaffold fabrication techniques for potential tissue engineering applications, Tissue engineering, 141 (2010) 145.
[49] J.M. Deitzel, J. Kleinmeyer, D. Harris, N.B. Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer, 42 (2001) 261-272.
[50] S. Thandavamoorthy, N. Gopinath, S. Ramkumar, Self‐assembled honeycomb polyurethane nanofibers, Journal of Applied Polymer Science, 101 (2006) 3121-3124.
[51] G. Yan, J. Yu, Y. Qiu, X. Yi, J. Lu, X. Zhou, X. Bai, Self-assembly of electrospun polymer nanofibers: A general phenomenon generating honeycomb-patterned nanofibrous structures, Langmuir, 27 (2011) 4285-4289.
[52] M.M. Li, Y.Z. Long, Fabrication of self-assembled three-dimensional fibrous stackings by electrospinning, Materials Science Forum, 688 (2011) 95-101.
[53] B. Sun, Y.-Z. Long, F. Yu, M.-M. Li, H.-D. Zhang, W.-J. Li, T.-X. Xu, Self-assembly of a three-dimensional fibrous polymer sponge by electrospinning, Nanoscale, 4 (2012) 2134-2137.
[54] S.R. Motamedian, S. Hosseinpour, M.G. Ahsaie, A. Khojasteh, Smart scaffolds in bone tissue engineering: A systematic review of literature, World journal of stem cells, 7 (2015) 657-668.
[55] W. Lin, M. Chen, T. Qu, J. Li, Y. Man, Three‐dimensional electrospun nanofibrous scaffolds for bone tissue engineering, Journal of Biomedical Materials Research Part B: Applied Biomaterials, (2019) 1-11.
[56] G. Viswanathan, S. Murugesan, V. Pushparaj, O. Nalamasu, P.M. Ajayan, R.J. Linhardt, Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids, Biomacromolecules, 7 (2006) 415-418.
[57] C.S. Ki, J.W. Kim, J.H. Hyun, K.H. Lee, M. Hattori, D.K. Rah, Y.H. Park, Electrospun three‐dimensional silk fibroin nanofibrous scaffold, Journal of Applied Polymer Science, 106 (2007) 3922-3928.
[58] C.S. Ki, S.Y. Park, H.J. Kim, H.-M. Jung, K.M. Woo, J.W. Lee, Y.H. Park, Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration, Biotechnology letters, 30 (2008) 405-410.
[59] Y. Yokoyama, S. Hattori, C. Yoshikawa, Y. Yasuda, H. Koyama, T. Takato, H. Kobayashi, Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric, Materials letters, 63 (2009) 754-756.
[60] Y.Y. H. Kobayashi, T. Takato, H. Koyama, S. Ichioka, , Spongiform Structured Materials and its Manufacturing Methods, Japanese patent, 2007-103201.
[61] J. Fang, H. Wang, H. Niu, T. Lin, X. Wang, Evolution of fiber morphology during electrospinning, Journal of Applied Polymer Science, 118 (2010) 2553-2561.
[62] E. Bafekrpour, M. Parhizkar, J. Fang, X. Wang, T. Lin, A novel method to investigate the polystyrene nanofiber formation during electrospinning process, International Journal of Advanced Engineering Applications, 1 (2013) 1-7.
[63] J.M. Coburn, M. Gibson, S. Monagle, Z. Patterson, J.H. Elisseeff, Bioinspired nanofibers support chondrogenesis for articular cartilage repair, Proceedings of the National Academy of Sciences, 109 (2012) 10012-10017.
[64] L. Kong, G.R. Ziegler, Rheological aspects in fabricating pullulan fibers by electro-wet-spinning, Food Hydrocolloids, 38 (2014) 220-226.
[65] M.N. Nosar, M. Salehi, S. Ghorbani, S.P. Beiranvand, A. Goodarzi, M. Azami, Characterization of wet-electrospun cellulose acetate based 3-dimensional scaffolds for skin tissue engineering applications: influence of cellulose acetate concentration, Cellulose, 23 (2016) 3239-3248.
[66] D. Atila, D. Keskin, A. Tezcaner, Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications, Carbohydrate Polymers, 133 (2015) 251-261.
[67] L. Kong, G.R. Ziegler, Fabrication of pure starch fibers by electrospinning, Food Hydrocolloids, 36 (2014) 20-25.
[68] H. Wang, L. Kong, G.R. Ziegler, Aligned wet-electrospun starch fiber mats, Food Hydrocolloids, 90 (2019) 113-117.
[69] H. Kobayashi, D. Terada, Y. Yokoyama, D.W. Moon, Y. Yasuda, H. Koyama, T. Takato, Vascular-inducing poly (glycolic acid)-collagen nanocomposite-fiber scaffold, Journal of Biomedical Nanotechnology, 9 (2013) 1318-1326.
[70] N. Sekiya, S. Ichioka, D. Terada, S. Tsuchiya, H. Kobayashi, Efficacy of a poly glycolic acid (PGA)/collagen composite nanofibre scaffold on cell migration and neovascularisation in vivo skin defect model, Journal of Plastic Surgery and Hand Surgery, 47 (2013) 498-502.
[71] H. Ding, J. Zhong, F. Xu, F. Song, M. Yin, Y. Wu, Q. Hu, J. Wang, Establishment of 3D culture and induction of osteogenic differentiation of pre-osteoblasts using wet-collected aligned scaffolds, Materials Science and Engineering: C, 71 (2017) 222-230.
[72] Z. Hadisi, J. Nourmohammadi, N. Haghighipour, S. Heidari, How direct electrospinning in methanol bath affects the physico-chemical and biological properties of silk fibroin nanofibrous scaffolds, Micro & Nano Letters, 11 (2016) 514-517.
[73] Y. Kawahara, S. Okamura, T. Yoshioka, Structure of regenerated nonwoven silk fibroin nanofiber fabric produced by wet electrospinning, The Journal of Silk Science and Technology of Japan, 26 (2018) 47-51.
[74] Y. Kishimoto, T. Kobashi, H. Morikawa, Y. Tamada, Production of three-dimensional silk fibroin nanofiber non-woven fabric by wet electrospinning, The Journal of Silk Science and Technology of Japan, 25 (2017) 49-57.
[75] H. Chen, Y. Peng, S. Wu, L.P. Tan, Electrospun 3D fibrous scaffolds for chronic wound repair, Materials, 9 (2016) 272.
[76] J.H. Brown, P. Das, M.D. DiVito, D. Ivancic, L.P. Tan, J.A. Wertheim, Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro, Acta Biomaterialia, 73 (2018) 217-227.
[77] M. Salehi, F. Bastami, Characterization of Wet-electrospun Poly (ε-caprolactone)/Poly (L-lactic) Acid with Calcium Phosphates Coated with Chitosan for Bone Engineering, Regeneration, Reconstruction & Restoration, 1 (2016) 69-74.
[78] M. Salehi, M. Naseri-Nosar, S. Ghorbani, S. Farzamfar, M. Azami, Wet-electrospun PCL/PLLA Blend Scaffolds: Effects of Versatile Coagulation Baths on Physicochemical and Biological Properties of the Scaffolds, Regeneration, Reconstruction & Restoration, 2 (2017) 1-7.
[79] M. Naseri-Nosar, M. Salehi, S. Hojjati-Emami, Cellulose acetate/poly lactic acid coaxial wet-electrospun scaffold containing citalopram-loaded gelatin nanocarriers for neural tissue engineering applications, International Journal of Biological Macromolecules, 103 (2017) 701-708.
[80] S. Ghorbani, H. Eyni, T. Tiraihi, L.S. Asl, M. Soleimani, A. Atashi, S.P. Beiranvand, M.E. Warkiani, Combined effects of 3D bone marrow stem cell-seeded wet-electrospun poly lactic acid scaffolds on full-thickness skin wound healing, International Journal of Polymeric Materials and Polymeric Biomaterials, (2017) 1-7.
[81] X. Jing, H. Li, H.-Y. Mi, Y.-J. Liu, Y.-M. Tan, Fabrication of Three-Dimensional Fluffy Nanofibrous Scaffolds for Tissue Engineering via Electrospinning and CO2 Escaping Foaming, Industrial & Engineering Chemistry Research, 58 (2019) 9412-9421.
[82] W.R.N. Udangawa, C.F. Willard, C. Mancinelli, C. Chapman, R.J. Linhardt, T.J. Simmons, Coconut oil-cellulose beaded microfibers by coaxial electrospinning: An eco-model system to study thermoregulation of confined phase change materials, Cellulose, 26 (2018) 1-14.
[83] S. Zhu, H. Yu, Y. Chen, M. Zhu, Study on the morphologies and formational mechanism of poly (hydroxybutyrate-co-hydroxyvalerate) ultrafine fibers by dry-jet-wet-electrospinning, Journal of Nanomaterials, 25 (2012) 1-8.
[84] A.M. Díez-Pascual, A.L. Díez-Vicente, Electrospun fibers of chitosan-grafted polycaprolactone/poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) blends, Journal of Materials Chemistry B, 4 (2016) 600-612.
[85] T.J. Shin, S.Y. Park, H.J. Kim, H.J. Lee, J.H. Youk, Development of 3-D poly (trimethylenecarbonate-co-ε-caprolactone)-block-poly (p-dioxanone) scaffold for bone regeneration with high porosity using a wet electrospinning method, Biotechnology Letters, 32 (2010) 877-882.
[86] E. Çatıker, E. Konuk, T. Gültan, M. Gümüşderelioğlu, Enhancement of scaffolding properties for poly (3-hydroxybutyrate): blending with poly-β-alanine and wet electrospinning, International Journal of Polymeric Materials and Polymeric Biomaterials, 68 (2018) 1-11.
[87] A. Sonseca, R. Sahay, K. Stepien, J. Bukala, A. Wcislek, A. McClain, P. Sobolewski, X. Sui, J.E. Puskas, J. Kohn, Architectured helically coiled scaffolds from elastomeric poly (butylene succinate)(PBS) copolyester via wet electrospinning, (2018) 1-23.
[88] A. Sonseca, R. Sahay, K. Stepien, A. Wcislek, A. McClain, P. Sobolewski, X. Sui, J.E. Puskas, H.D. Wagner, J. Kohnȥ, Wet electrospinning of poly (butylene succinate)(PBS) copolyester into helically coiled 3D structures, (2018) 1-25.
[89] E. Shamirzaei Jeshvaghani, L. Ghasemi‐Mobarakeh, R. Mansurnezhad, F. Ajalloueian, M. Kharaziha, M. Dinari, M. Sami Jokandan, I.S. Chronakis, Fabrication, characterization, and biocompatibility assessment of a novel elastomeric nanofibrous scaffold: A potential scaffold for soft tissue engineering, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106 (2018) 2371-2383.
[90] J. Coburn, M. Gibson, P.A. Bandalini, C. Laird, H.-Q. Mao, L. Moroni, D. Seliktar, J. Elisseeff, Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering, Smart Structures and Systems, 7 (2011) 213-222.
[91] J. Wang, P. Zhou, A. Obata, J.R. Jones, T. Kasuga, Preparation of Cotton-Wool-Like Poly (lactic acid)-Based Composites Consisting of Core-Shell-Type Fibers, Materials, 8 (2015) 7979-7987.
[92] T. Kasuga, A. Obata, H. Maeda, Y. Ota, X. Yao, K. Oribe, Siloxane-poly (lactic acid)-vaterite composites with 3D cotton-like structure, Journal of Materials Science: Materials in Medicine, 23 (2012) 2349-2357.
[93] H. Eyni, S. Ghorbani, R. Shirazi, L. Salari Asl, S. P Beiranvand, M. Soleimani, Three-dimensional wet-electrospun poly (lactic acid)/multi-wall carbon nanotubes scaffold induces differentiation of human menstrual blood-derived stem cells into germ-like cells, Journal of Biomaterials Applications, 32 (2017) 373-383.
[94] B. Holmes, N.J. Castro, J. Li, M. Keidar, L.G. Zhang, Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes, Nanotechnology, 24 (2013) 1-10.
[95] S. Ghorbani, T. Tiraihi, M. Soleimani, Differentiation of mesenchymal stem cells into neuron-like cells using composite 3D scaffold combined with valproic acid induction, Journal of Biomaterials Applications, 32 (2018) 702-715.
[96] O. Colpankan Gunes, I. Unalan, B. Cecen, A. Ziylan Albayrak, H. Havitcioglu, O. Ustun, B.U. Ergur, Three-dimensional silk impregnated HAp/PHBV nanofibrous scaffolds for bone regeneration, International Journal of Polymeric Materials and Polymeric Biomaterials, 68 (2018) 1-12.
[97] A. Kara, O.C. Gunes, A.Z. Albayrak, G. Bilici, G. Erbil, H. Havitcioglu, Fish scale/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanofibrous composite scaffolds for bone regeneration, Journal of Biomaterials Applications, (2020) 1-15.
[98] A. Arslan, S. Çakmak, M. Gümüşderelioğlu, Enhanced osteogenic activity with boron-doped nanohydroxyapatite-loaded poly (butylene adipate-co-terephthalate) fibrous 3D matrix, Artificial Cells, Nanomedicine, and Biotechnology, 46 (2018) 1-10.
[99] S.Y. Yang, T.H. Hwang, L. Che, J.S. Oh, Y. Ha, W. Ryu, Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering, Biomedical Materials, 10 (2015) 035011.
[100] J. Luo, H. Zhang, X. Cui, J. Gao, X. Wang, J. Xiong, 3-D Mineralized Silk Fibroin/Polycaprolactone Composite Scaffold Modified with Polyglutamate Conjugated with BMP-2 Peptide for Bone Tissue Engineering, Colloids and Surfaces B: Biointerfaces, 163 (2017) 369-378.
[101] V.Y. Chakrapani, T.S. Kumar, D.K. Raj, T. Kumary, Electrospun 3D composite scaffolds for craniofacial critical size defects, Journal of Materials Science: Materials in Medicine, 28 (2017) 1-10.
[102] O. Akturk, K. Kismet, A.C. Yasti, S. Kuru, M.E. Duymus, F. Kaya, M. Caydere, S. Hucumenoglu, D. Keskin, Wet electrospun silk fibroin/gold nanoparticle 3D matrices for wound healing applications, RSC Advances, 6 (2016) 13234-13250.
[103] A.D. Dalgic, A.Z. Alshemary, A. Tezcaner, D. Keskin, Z. Evis, Silicate-doped nano-hydroxyapatite/graphene oxide composite reinforced fibrous scaffolds for bone tissue engineering, Journal of Biomaterials Applications, 32 (2018) 1392-1405.
[104] A.D. Dalgic, D. Atila, A. Karatas, A. Tezcaner, D.J.M.S. Keskin, E. C, Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffolds for bone tissue engineering, Materials Science and Engineering: C, 100 (2019) 735-746.
[105] Z. Hadisi, J. Nourmohammadi, J. Mohammadi, Composite of porous starch-silk fibroin nanofiber-calcium phosphate for bone regeneration, Ceramics International, 41 (2015) 10745-10754.
[106] Y. Zheng, J. Miao, N. Maeda, D. Frey, R.J. Linhardt, T.J. Simmons, Uniform nanoparticle coating of cellulose fibers during wet electrospinning, Journal of Materials Chemistry A, 2 (2014) 15029-15034.
[107] L. Hou, W.R.N. Udangawa, A. Pochiraju, W. Dong, Y. Zheng, R.J. Linhardt, T.J. Simmons, Synthesis of Heparin-Immobilized, Magnetically Addressable Cellulose Nanofibers for Biomedical Applications, ACS Biomaterials Science & Engineering, 2 (2016) 1905-1913.
[108] M. Zhang, H. Lin, Y. Wang, G. Yang, H. Zhao, D. Sun, Fabrication and durable antibacterial properties of 3D porous wet electrospun RCSC/PCL nanofibrous scaffold with silver nanoparticles, Applied Surface Science, 414 (2017) 52-62.
[109] S. Farzamfar, M. Naseri-Nosar, A. Vaez, F. Esmaeilpour, A. Ehterami, H. Sahrapeyma, H. Samadian, A.-A. Hamidieh, S. Ghorbani, A. Goodarzi, Neural tissue regeneration by a gabapentin-loaded cellulose acetate/gelatin wet-electrospun scaffold, Cellulose, 25 (2018) 1229-1238.
[110] M. Naseri-Nosar, S. Farzamfar, M. Salehi, A. Vaez, R. Tajerian, M. Azami, Erythropoietin/aloe vera-releasing wet-electrospun polyvinyl alcohol/chitosan sponge-like wound dressing: In vitro and in vivo studies, Journal of Bioactive and Compatible Polymers, 33 (2018) 269-281.
[111] M.B. Taskin, R. Xu, H. Gregersen, J.V. Nygaard, F. Besenbacher, M. Chen, Three-Dimensional Polydopamine Functionalized Coiled Microfibrous Scaffolds Enhance Human Mesenchymal Stem Cells Colonization and Mild Myofibroblastic Differentiation, ACS Applied Materials & Interfaces, 8 (2016) 15864-15873.
[112] Y. Chen, M.B.B. Taskin, Z. Zhang, Y. Su, X. Han, M. Chen, Bioadhesive Anisotropic Nanogrooved Microfibers Directing Three-dimensional Neurite Extension, Biomaterials Science, 7 (2019) 2165-2173.
[113] R.N. Udangawa, P.E. Mikael, C. Mancinelli, C. Chapman, C.F. Willard, T.J. Simmons, R.J. Linhardt, Novel Cellulose–Halloysite Hemostatic Nanocomposite Fibers with a Dramatic Reduction in Human Plasma Coagulation Time, ACS Applied Materials & Interfaces, 11 (2019) 15447-15456.
[114] P. Das, M.D. DiVito, J.A. Wertheim, L.P. Tan, Collagen-I and fibronectin modified three-dimensional electrospun PLGA scaffolds for long-term in vitro maintenance of functional hepatocytes, Materials Science and Engineering: C, (2020) 110723.
[115] S.S. Majidi, P. Slemming-Adamsen, M. Hanif, Z. Zhang, Z. Wang, M. Chen, Wet electrospun alginate/gelatin hydrogel nanofibers for 3D cell culture, International Journal of Biological Macromolecules, 118 (2018) 1648-1654.
[116] E. Kostakova, M. Seps, P. Pokorny, D. Lukas, Study of polycaprolactone wet electrospinning process, Express Polymer Letters, 8 (2014) 554-564.
[117] H. Wang, G.R. Ziegler, Electrospun nanofiber mats from aqueous starch-pullulan dispersions: Optimizing dispersion properties for electrospinning, International Journal of Biological Macromolecules, 133 (2019) 1168-1174.
[118] W. Yang, F. Yang, Y. Wang, S.K. Both, J.A. Jansen, In vivo bone generation via the endochondral pathway on three-dimensional electrospun fibers, Acta Biomaterialia, 9 (2013) 4505-4512.
[119] X. Cai, F. Yang, X. Yan, W. Yang, N. Yu, D.A. Oortgiesen, Y. Wang, J.A. Jansen, X.F. Walboomers, Influence of bone marrow‐derived mesenchymal stem cells pre‐implantation differentiation approach on periodontal regeneration in vivo, Journal of clinical periodontology, 42 (2015) 380-389.
[120] H. Tang, J.F. Husch, Y. Zhang, J.A. Jansen, F. Yang, J.J.J.J.o.t.e. van den Beucken, r. medicine, Co‐culture with monocytes/macrophages modulates osteogenic differentiation of adipose‐derived mesenchymal stromal cells on PLGA/PCL scaffolds, Journal of Tissue Engineering and Regenerative Medicine, 13 (2019) 785-798.
[121] D. Atila, D. Keskin, A. Tezcaner, Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering, Materials Science and Engineering C, 69 (2016) 1103-1115.
[122] X. Jing, H. Li, H.-Y. Mi, Y.-J. Liu, Y.-M. Tan, Fabrication of fluffy shish-kebab structured nanofibers by electrospinning, CO2 escaping foaming and controlled crystallization for biomimetic tissue engineering scaffolds, Chemical Engineering Journal, 372 (2019) 785-795.
[123] X. Cai, S. ten Hoopen, W. Zhang, C. Yi, W. Yang, F. Yang, J.A. Jansen, X. Frank Walboomers, P.C. Yelick, Influence of highly porous electrospun PLGA/PCL/nHA fibrous scaffolds on the differentiation of tooth bud cells in vitro, Journal of Biomedical Materials Research Part A, (2017).
[124] S. Hong, G.J.A.P.A. Kim, Fabrication of size-controlled three-dimensional structures consisting of electrohydrodynamically produced polycaprolactone micro/nanofibers, 103 (2011) 1009-1014.
[125] M.S. Kim, G. Kim, Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds, Carbohydrate Polymers, 114 (2014) 213-221.
[126] M. Kim, G.H. Kim, Electrohydrodynamic direct printing of PCL/collagen fibrous scaffolds with a core/shell structure for tissue engineering applications, Chemical Engineering Journal, 279 (2015) 317-326.
[127] M. Kim, H.-s. Yun, G.H. Kim, Electric-field assisted 3D-fibrous bioceramic-based scaffolds for bone tissue regeneration: Fabrication, characterization, and in vitro cellular activities, Scientific Reports, 7 (2017) 1-13.
[128] M.S. Kim, G. Kim, Electrohydrodynamic jet process for pore-structure-controlled 3D fibrous architecture as a tissue regenerative material: fabrication and cellular activities, Langmuir, 30 (2014) 8551-8557.
[129] J. Heo, H. Nam, D. Hwang, S.J. Cho, S.-Y. Jung, D.-W. Cho, J.-H. Shim, G. Lim, Enhanced cellular distribution and infiltration in a wet electrospun three-dimensional fibrous scaffold using eccentric rotation-based hydrodynamic conditions, Sensors and Actuators B: Chemical, 226 (2016) 357-363.
[130] H. Cao, K. Mchugh, S.Y. Chew, J.M. Anderson, The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction, Journal of Biomedical Materials Research Part A, 93 (2010) 1151-1159.
[131] R.S. Tığlı, N.M. Kazaroğlu, B. Maviş, M. Gümüşderelioğlu, Cellular behavior on epidermal growth factor (EGF)-immobilized PCL/gelatin nanofibrous scaffolds, Journal of Biomaterials Science, Polymer Edition, 22 (2011) 207-223.
[132] G.H. Kim, H. Han, J.H. Park, W.D. Kim, An applicable electrospinning process for fabricating a mechanically improved nanofiber mat, Polymer Engineering & Science, 47 (2007) 707-712.
[133] Anonim, Ethanol Surface Tension Calculator, http://ddbonline.ddbst.de/DIPPR106SFTCalculation/DIPPR106SFTCalculationCGI.exe, (Erişim tarihi: 13 Ağustos 2019).
[134] O. Karatay, M. Dogan, T. Uyar, D. Cokeliler, I.C. Kocum, An alternative electrospinning approach with varying electric field for 2-D-aligned nanofibers, IEEE Transactions on Nanotechnology, 13 (2014) 101-108. | tr_TR |