A Generalization of Projective Covers
Tarih
2008Yazar
Alkan, Mustafa
Nicholson, W. Keith
Ozcan, A. Cigdem
- Citations
- CrossRef - Citation Indexes: 2
- Scopus - Citation Indexes: 9
- Captures
- Mendeley - Readers: 6
publications
0
supporting
0
mentioning
0
contrasting
0
0
0
0
0
Citing PublicationsSupportingMentioningContrasting
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Üst veri
Tüm öğe kaydını gösterÖzet
Let M be a left module over a ring R and I an ideal of R. We call (P, f) a projective I-cover of M if f is an epimorphism from P to M, P is projective, Ker f subset of I P, and whenever P = Ker f + X, then there exists a summand Y of P in Ker f such that P = Y + X. This definition generalizes projective covers and projective delta-covers. Similar to semiregular and serniperfect rings, we characterize I-semiregular and I-semiperfect rings which are defined by Yousif and Zhou using projective I-covers. In particular, we consider certain ideals such as Z((R) R), Soc((R) R), delta(R R) and Z(2) ((R) R). (c) 2008 Elsevier Inc. All rights reserved.