A Generalization of J - Quasipolar Rings
Date
2017Author
Calci, T. P.
Halicioglu, S.
Harmanci, A.
- Citations
- Scopus - Citation Indexes: 1
- Captures
- Mendeley - Readers: 1
publications
0
supporting
0
mentioning
0
contrasting
0
0
0
0
0
Citing PublicationsSupportingMentioningContrasting
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
xmlui.mirage2.itemSummaryView.MetaData
Show full item recordAbstract
In this paper we introduce a class of quasipolar rings which is a generalization of J-quasipolar rings. Let R be a ring with identity. An element a is an element of R is called delta-quasipolar if there exists p(2) = p is an element of comm(2)(a) such that a + p is contained in delta(R), and the ring R is called delta-quasipolar if every element of R is delta-quasipolar. We use delta-quasipolar rings to extend some results of J-quasipolar rings. Then some of the main results of J-quasipolar rings are special cases of our results for this general setting. We give many characterizations and investigate general properties of delta-quasipolar rings.