dc.identifier.citation | [1] A. Abedini, A. R. Daud, M. A. Abdul Hamid, N. Kamil Othman, and E. Saion, “A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles,” Nanoscale Res. Lett., vol. 8, no. 1, p. 474, Dec. 2013.
[2] J. Prakash, J. C. Pivin, and H. C. Swart, “Noble metal nanoparticles embedding into polymeric materials: From fundamentals to applications.,” Adv. Colloid Interface Sci., vol. 226, no. Pt B, pp. 187–202, Dec. 2015.
[3] M. Zahmakıran and S. Özkar, “Metal nanoparticles in liquid phase catalysis; from recent advances to future goals,” Nanoscale, vol. 3, no. 9, p. 3462, Sep. 2011.
[4] G. G. Flores-Rojas, F. López-Saucedo, and E. Bucio, “Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: A short review,” Radiat. Phys. Chem., Aug. 2018.
[5] A. Henglein, “Physicochemical Properties of Small Metal Particles in Solution: ‘Microelectrode’ Reactions, Chemisorption, Composite Metal Particles, and the Atom-to-Metal Transition,” J. Phys. Chem., vol. 97, no. 21, pp. 5457–5471, May 1993.
[6] B. I. Kharisov, O. V. Kharissova, and U. Ortiz Méndez, Radiation synthesis of materials and compounds. CRC Press, Taylor & Francis Group, 2013.
[7] J. L. Marignier, J. Belloni, M. O. Delcourt, and J. P. Chevalier, “Microaggregates of non-noble metals and bimetallic alloys prepared by radiation-induced reduction,” Nature, vol. 317, no. 6035, pp. 344–345, Sep. 1985.
[8] C. C. J. Seechurn, M. O. Kitching, T. J. Colacot, and and V. Snieckus, “Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize,” Angew. Chemie Int. Ed., vol. 51, no. 21, pp. 5062–5085, May 2012.
[9] A. Biffis, P. Centomo, A. Del Zotto, and M. Zecca, “Pd Metal Catalysts for Cross-Couplings and Related Reactions in the 21st Century: A Critical Review,” Chem. Rev., vol. 118, no. 4, pp. 2249–2295, Feb. 2018.
[10] T. Iwasawa, M. Tokunaga, A. Y. Obora, and Y. Tsuji, “Homogeneous Palladium Catalyst Suppressing Pd Black Formation in Air Oxidation of Alcohols,” J. Am. Chem. Soc., vol. 126, no. 21, 2004.
[11] M. Rakap, “The highest catalytic activity in the hydrolysis of ammonia borane by poly(N-vinyl-2-pyrrolidone)-protected palladium–rhodium nanoparticles for hydrogen generation,” Appl. Catal. B Environ., vol. 163, pp. 129–134, Feb. 2015.
[12] M. Opanasenko, P. Stepnicka, and J. Cejka, “Heterogeneous Pd catalysts supported on silica matrices,” RSC Adv., vol. 4, no. 110, pp. 65137–65162, Nov. 2014.
[13] N. Khodabakhsh, S. H. Maryam, D. Abdollah, P. Farhad, and H. N. M. Reza, “Modification of Silica Using Piperazine for Immobilization of Palladium Nanoparticles: A Study of Its Catalytic Activity as an Efficient Heterogeneous Catalyst for Heck and Suzuki Reactions,” J. Iran. Chem. Soc., vol. 10, no. 3, pp. 527–534, Jan. 2013.
[14] F. P. da Silva, J. L. Fiorio, and L. M. Rossi, “Tuning the Catalytic Activity and Selectivity of Pd Nanoparticles Using Ligand-Modified Supports and Surfaces,” ACS Omega, vol. 2, no. 9, pp. 6014–6022, Sep. 2017.
[15] R. Liu, P. Liao, J. Liu, and P. Feng, “Responsive Polymer-Coated Mesoporous Silica as a pH-Sensitive Nanocarrier for Controlled Release,” Langmuir, vol. 27, no. 6, pp. 3095–3099, Mar. 2011.
[16] Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, “Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?,” Angew. Chemie Int. Ed., vol. 48, no. 1, pp. 60–103, Jan. 2009.
[17] G. Chen et al., “Interfacial electronic effects control the reaction selectivity of platinum catalysts,” Nat. Mater., vol. 15, no. 5, pp. 564–569, May 2016.
[18] S. G. Kwon et al., “Capping Ligands as Selectivity Switchers in Hydrogenation Reactions,” Nano Lett., vol. 12, no. 10, pp. 5382–5388, Oct. 2012.
[19] M. Barsbay and O. Güven, “A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner,” Radiat. Phys. Chem., vol. 78, no. 12, pp. 1054–1059, Dec. 2009.
[20] M. Barsbay and O. Güven, “RAFT mediated grafting of poly (acrylic acid)(PAA) from polyethylene/polypropylene (PE/PP) nonwoven fabric via preirradiation,” Polymer (Guildf)., vol. 54, no. 18, pp. 4838–4848, 2013.
[21] M. Barsbay and O. Güven, “Grafting in confined spaces: Functionalization of nanochannels of track-etched membranes,” Radiat. Phys. Chem., vol. 105, pp. 26–30, 2014.
[22] M. Barsbay, O. Güven, T. P. Davis, C. Barner-Kowollik, and L. Barner, “RAFT-mediated polymerization and grafting of sodium 4-styrenesulfonate from cellulose initiated via γ-radiation,” Polymer (Guildf)., vol. 50, no. 4, pp. 973–982, Feb. 2009.
[23] M. Barsbay, O. Güven, M. H. Stenzel, T. P. Davis, C. Barner-Kowollik, and L. Barner, “Verification of Controlled Grafting of Styrene from Cellulose via Radiation-Induced RAFT Polymerization,” Macromolecules, vol. 40, no. 20, pp. 7140–7147, Oct. 2007.
[24] G. Çelik, M. Barsbay, and O. Güven, “Towards new proton exchange membrane materials with enhanced performance via RAFT polymerization,” Polym. Chem., vol. 7, no. 3, pp. 701–714, Jan. 2016.
[25] Y.-J. Song, M. Wang, X.-Y. Zhang, J.-Y. Wu, and T. Zhang, “Investigation on the role of the molecular weight of polyvinyl pyrrolidone in the shape control of high-yield silver nanospheres and nanowires,” Nanoscale Res. Lett., vol. 9, no. 1, p. 17, Jan. 2014.
[26] H. Hirai and N. Yakura, “Protecting polymers in suspension of metal nanoparticles,” Polym. Adv. Technol., vol. 12, no. 11–12, pp. 724–733, 2001.
[27] R. G. Shimmin, A. B. Schoch, and P. V Braun, “Polymer size and concentration effects on the size of gold nanoparticles capped by polymeric thiols.,” Langmuir, vol. 20, no. 13, pp. 5613–20, Jun. 2004.
[28] C. M. Chan, A. T. Ko, and H. Hiraoka, “Polymer surface modificatin by plasmas and photons,” Surf. Sci. Rep., vol. 24, no. 1–2, pp. 3–54, 1996.
[29] A. S. Hoffman, “Surface modification of polymers: Physical, chemical, mechanical and biological methods,” Macromol. Symp., vol. 101, no. 1, pp. 443–454, Jan. 1996.
[30] R. N. Wahyu Nugroho, Modification of Polymeric Particles via Surface Grafting for 3d Scaffold Design. 2015.
[31] F. M. Michael, M. Khalid, R. Walvekar, H. Siddiqui, and A. B. Balaji, “Surface modification techniques of biodegradable and biocompatible polymers,” Elsevier, pp. 33–54, 2018.
[32] A. A. John et al., “Review: physico-chemical modification as a versatile strategy for the biocompatibility enhancement of biomaterials,” RSC Adv., vol. 5, no. 49, pp. 39232–39244, 2015.
[33] R. J. Young and P. A. L. Chapman, “Introduction to polymers,” Polym. Int., vol. 27, no. 2, pp. 207–208, Jan. 1992.
[34] F. J. Xu, Z. H. Wang, and W. T. Yang, “Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules,” Biomaterials, vol. 31, no. 12, pp. 3139–3147, Apr. 2010.
[35] A. Bhattacharya and B. N. Misra, “Grafting: a versatile means to modify polymers: Techniques, factors and applications,” Prog. Polym. Sci., vol. 29, no. 8, pp. 767–814, Aug. 2004.
[36] M. Ejaz, S. Yamamoto, K. Ohno, A. Y. Tsujii, and T. Fukuda, “Controlled Graft Polymerization of Methyl Methacrylate on Silicon Substrate by the Combined Use of the Langmuir−Blodgett and Atom Transfer Radical Polymerization Techniques,” Macromolecules, vol. 31, no. 17, pp. 5934–5936, 1998.
[37] X. Huang and M. J. Wirth, “Surface Initiation of Living Radical Polymerization for Growth of Tethered Chains of Low Polydispersity,” Macromolecules, vol. 32, no. 5, pp. 1694–1696, 1999.
[38] B. Z. And and W. J. Brittain, “Synthesis of Tethered Polystyrene-block-Poly(methyl methacrylate) Monolayer on a Silicate Substrate by Sequential Carbocationic Polymerization and Atom Transfer Radical Polymerization,” J. Am. Chem. Soc., vol. 121, no. 14, pp. 3557–3558, 1999.
[39] M. Husseman et al., “Controlled Synthesis of Polymer Brushes by ‘Living’ Free Radical Polymerization Techniques,” Macromolecules, vol. 32, pp. 1424–1431, 1999.
[40] Matyjaszewski Polymer Group, “Hybrid Brush Copolymers.” https://www.cmu.edu/maty/materials/Nanostructured-materials/hybrid-brush-copolymers.html. [Accessed: 22-May-2019].
[41] T. von W. And and T. E. Patten, “Preparation of Structurally Well-Defined Polymer−Nanoparticle Hybrids with Controlled/Living Radical Polymerizations,” J. Am. Chem. Soc., vol. 121, pp. 7409–7410, 1999.
[42] B. De Boer, H. K. Simon, M. P. L. Werts, E. W. Van Der Vegte, and G. Hadziioannou, “`Living’ free radical photopolymerization initiated from surface-grafted iniferter monolayers,” Macromolecules, vol. 33, no. 2, pp. 349–356, 2000.
[43] J. B. Kim, M. L. Bruening, and G. L. Baker, “Surface-initiated atom transfer radical polymerization on gold at ambient temperature,” Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem., vol. 41, no. 2, p. 1300, 2000.
[44] C. Barner-Kowollik, Handbook of RAFT polymerization. Weinheim, Germany: Wiley-VCH, 2008.
[45] M. Shamsipur, J. Fasihi, and K. Ashtari, “Grafting of Ion-Imprinted Polymers on the Surface of Silica Gel Particles through Covalently Surface-Bound Initiators: A Selective Sorbent for Uranyl Ion,” Anal. Chem., vol. 79, no. 18, pp. 7116–7123, Sep. 2007.
[46] B. Zdyrko and I. Luzinov, “Polymer Brushes by the ‘Grafting to’ Method,” Macromol. Rapid Commun., vol. 32, no. 12, pp. 859–869, Jun. 2011.
[47] A. E. Müftüoğlu and Y. Yağcı, “Fotopolimerizasyon yöntemiyle çapraz bağlı ve aşı kopolimerler hazırlanması,” itü, vol. 3, no. 1, pp. 73–78, 2005.
[48] M. Asai, D. Zhao, and S. K. Kumar, “Role of Grafting Mechanism on the Polymer Coverage and Self-Assembly of Hairy Nanoparticles,” ACS Nano, vol. 11, no. 7, pp. 7028–7035, Jul. 2017.
[49] M. Stamm, “Polymer Surface and Interface Characterization Techniques,” in Polymer Surfaces and Interfaces, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1–16, 2008.
[50] Z. Li, “Well-defined molecular brushes: Synthesis by a ‘grafting through’ strategy and self assembly into complicated hierarchical nanostructures Doctor of Philosophy,” Washington University, 2011.
[51] M. Zhang and A. H. E. Müller, “Cylindrical polymer brushes,” J. Polym. Sci. Part A Polym. Chem., vol. 43, no. 16, pp. 3461–3481, Aug. 2005.
[52] J. Zhao, G. Mountrichas, G. Zhang, and S. Pispas, “Thermoresponsive Core−Shell Brush Copolymers with Poly(propylene oxide)- block -poly(ethylene oxide) Side Chains via a ‘Grafting from’ Technique,” Macromolecules, vol. 43, no. 4, pp. 1771–1777, Feb. 2010.
[53] S. Edmondson and B. Zhu, “Applying ARGET ATRP to the Growth of Polymer Brush Thin Films by Surface-initiated Polymerization,” Aldrich Mater. Sci., pp. 12–14, 2012.
[54] H. Arslan, “Block and Graft Copolymerization by Controlled/Living Radical Polymerization Methods,” Polymerization, pp. 279–287, Dec. 2012.
[55] V. Mishra and R. Kumar, “Living Radical Polymerization: A Review,” vol. 56, pp. 141–176, 2012.
[56] G. Moad, E. Rizzardo, and S. H. Thang, “Radical addition–fragmentation chemistry in polymer synthesis,” Polymer, vol. 49, no. 5, pp. 1079–1131, Mar. 2008.
[57] R. H. Grubbs and W. Tumas, “Polymer synthesis and organotransition metal chemistry.,” Science, vol. 243, no. 4893, pp. 907–15, Feb. 1989.
[58] R. Ranjan, “Surface Modification of Silica Nanoparticles, Doctor of Philosophy,” University of Akron, 2008.
[59] K. Matyjaszewski and J. Spanswick, “Controlled/living radical polymerization,” Mater. Today, vol. 8, no. 3, pp. 26–33, Mar. 2005.
[60] K. Matyjaszewski, Y. Gnanou, and L. Leibler, Macromolecular engineering : precise synthesis, materials properties, applications. Wiley-VCH, 2007.
[61] C. D. Craver and C. E. Carraher, Applied polymer science : 21st century. Elsevier, 2000.
[62] H. Mark, “Carbanions living polymers and electron transfer processes. M. Szwarc, ed. John Wiley & Sons, Inc. New York, 1968.,” J. Appl. Polym. Sci., vol. 14, no. 3, pp. 859–859, Mar. 1970.
[63] H. L. Hsieh and R. P. Quirk, “Anionic polymerization : principles and practical applications.”https://trove.nla.gov.au/work/21907558?selectedversion=NBD12134956. [Accessed: 22-May-2019].
[64] K. (Krzysztof) Matyjaszewski, Cationic polymerizations : mechanisms, synthesis, and applications. Marcel Dekker, 1996.
[65] O. W. Webster, “Living Polymerization Methods,” Science, vol. 251, no. 4996, pp. 887–893, Feb. 1991.
[66] K. Matyjaszewski and T. P. Davis, Handbook of radical polymerization. Wiley-Interscience, 2002.
[67] V. Coessens and K. Matyjaszewski, “Synthesis of polymers wıth amino end groups by atom transfer radical polymerization,” J. Macromol. Sci. Part A, vol. 36, no. 5–6, pp. 811–826, Jun. 1999.
[68] K. Matyjaszewski, “Non-living Cationic Polymerization of Alkenes,” Polym. Int., vol. 35, pp. 1–26, 1994.
[69] T. E. Patten and K. Matyjaszewski, “Atom Transfer Radical Polymerization and the Synthesis of Polymeric Materials,” Adv. Mater., vol. 10, no. 12, pp. 901–915, Aug. 1998.
[70] H. R. Kricheldorf, O. Nuyken, and G. Swift, Handbook of Polymer Synthesis: Second Edition. New York, 2005.
[71] T. E. Patten and K. Matyjaszewski, “Copper(I)-Catalyzed Atom Transfer Radical Polymerization,” Acc. Chem. Res., vol. 32, no. 10, pp. 895–903, 1999.
[72] E. Khosravi and T. Szymanska-Buzar, “Ring Opening Metathesis Polymerisation and Related Chemistry.” https://www.researchgate.net/publication/282444950 _Ring_Opening_Metathesis_Polymerisation_and_Related_Chemistry.[Accessed: 26-May-2019].
[73] K. Matyjaszewski, M. J. Ziegler, S. V. Arehart, D. Greszta, and T. Pakula, “Gradient copolymers by atom transfer radical copolymerization,” J. Phys. Org. Chem., vol. 13, no. 12, pp. 775–786, 2000.
[74] W. Jakubowski, A. K. Min, and K. Matyjaszewski, “Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization of Styrene,” Macromolecules, vol. 39, no. 1, pp. 39–45, 2005.
[75] K. Matyjaszewski et al., “Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents,” Proc. Natl. Acad. Sci., vol. 103, no. 42, pp. 15309–15314, Oct. 2006.
[76] W. Jakubowski et al., “Contents Full Papers Polystyrene with Improved Chain-End Functionality and Higher Molecular Weight by ARGET ATRP Conductive Polymer Electrolytes Derived from Poly(norbornene)s with Pendant Ionic Imidazolium Moieties Novel Amphiphilic Styrene-Based Block C,” Macromol. Chem. Phys, vol. 209, pp. 3–8, 2008.
[77] K. Matyjaszewski et al., “Role of Cu0 in Controlled/‘Living’ Radical Polymerization,” Macromolecules, vol. 40, no. 22, pp. 7795–7806, 2007.
[78] F. E. McDonald, “Alkynolendo-Cyclo isomerizations and Conceptually Related Transformations,” Chem. - A Eur. J., vol. 5, no. 11, pp. 3103–3106, Nov. 1999.
[79] H. Dong and K. Matyjaszewski, “Arget ATRP of 2-(Dimethylamino)ethyl Methacrylate as an Intrinsic Reducing Agent,” Macromolecules, vol. 41, no. 19, pp. 6868–6870, Oct. 2008.
[80] V. Mittal, N. B. Matsko, A. Butté, and M. Morbidelli, “Synthesis of temperature responsive polymer brushes from polystyrene latex particles functionalized with ATRP initiator,” Eur. Polym. J., vol. 43, no. 12, pp. 4868–4881, Dec. 2007.
[81] K. Matyjaszewski and S. G. Gaynor, “Free Radical Polymerization,” Appl. Polym. Sci. 21st Century, pp. 929–977, Jan. 2000.
[82] “Polymerization process and polymers produced thereby,” 11-Jul-1984. https://patents.google.com/patent/US4581429A/en. [Accessed: 26-May-2019].
[83] J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes, and B. Charleux, “Nitroxide-mediated polymerization,” Prog. Polym. Sci., vol. 38, no. 1, pp. 63–235, Jan. 2013.
[84] “Block copolymer synthesis using a commercially available nitroxide mediated radical polymerization (NMP) initiator.” https://www.researchgate.net/publication/ 286782734_Block_copolymer_synthesis_using_a_commercially_available_nitroxide-mediated_radical_polymerization_NMP_initiator. [Accessed: 26-May-2019].
[85] H. Fischer, “The Persistent Radical Effect: A Principle for Selective Radical Reactions and Living Radical Polymerizations,” Chem. Rev, vol. 101, no. 12, pp. 3581–3610, 2001.
[86] M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, and G. K. Hamer, “Narrow molecular weight resins by a free-radical polymerization process,” Macromolecules, vol. 26, no. 11, pp. 2987–2988, May 1993.
[87] A. Nilsen and R. Braslau, “Nitroxide decomposition: Implications toward nitroxide design for applications in living free-radical polymerization,” J. Polym. Sci. Part A Polym. Chem., vol. 44, no. 2, pp. 697–717, 2006.
[88] R. B. Grubbs, “Nitroxide-Mediated Radical Polymerization: Limitations and Versatility,” Polym. Rev., vol. 51, no. 2, pp. 104–137, Apr. 2011.
[89] M. Hosseini and A. S. H. Makhlouf, Industrial Applications for Intelligent Polymers and Coatings. Cham: Springer International Publishing, 2016.
[90] K. Matyjaszewski and N. V. Tsarevsky, “Nanostructured functional materials prepared by atom transfer radical polymerization,” Nat. Chem., vol. 1, no. 4, pp. 276–288, Jul. 2009.
[91] M. Ouchi, T. Terashima, and M. Sawamoto, “Transition Metal-Catalyzed Living Radical Polymerization: Toward Perfection in Catalysis and Precision Polymer Synthesis,” Chem. Rev., vol. 109, no. 11, pp. 4963–5050, Nov. 2009.
[92] M. Destarac, D. Charmot, X. Franck, and S. Z. Zard, “Dithiocarbamates as universal reversible addition-fragmentation chain transfer agents,” Macromol. Rapid Commun., vol. 21, no. 15, pp. 1035–1039, Oct. 2000.
[93] R. T. A. Mayadunne et al., “Living Polymers by the Use of Trithiocarbonates as Reversible Addition-Fragmentation Chain Transfer (RAFT) Agents: ABA Triblock Copolymers by Radical Polymerization in Two Steps,” Macromolecules, vol. 33, no. 2, pp. 243–245, 2000.
[94] R. F. And and A. Ajayaghosh, “Minimization of Homopolymer Formation and Control of Dispersity in Free Radical Induced Graft Polymerization Using Xanthate Derived Macro-photoinitiators,” Macromolecules, vol. 33, no. 13, pp. 4699–4704, 2000.
[95] G. Moad, E. Rizzardo, and S. H. Thang, “Toward Living Radical Polymerization,” Acc. Chem. Res., vol. 41, no. 9, pp. 1133–1142, Sep. 2008.
[96] J. Chiefari et al., “Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process,” Macromolecules, vol. 31, pp. 5559–5562, 1998.
[1] A. Abedini, A. R. Daud, M. A. Abdul Hamid, N. Kamil Othman, and E. Saion, “A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles,” Nanoscale Res. Lett., vol. 8, no. 1, p. 474, Dec. 2013.
[2] J. Prakash, J. C. Pivin, and H. C. Swart, “Noble metal nanoparticles embedding into polymeric materials: From fundamentals to applications.,” Adv. Colloid Interface Sci., vol. 226, no. Pt B, pp. 187–202, Dec. 2015.
[3] M. Zahmakıran and S. Özkar, “Metal nanoparticles in liquid phase catalysis; from recent advances to future goals,” Nanoscale, vol. 3, no. 9, p. 3462, Sep. 2011.
[4] G. G. Flores-Rojas, F. López-Saucedo, and E. Bucio, “Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: A short review,” Radiat. Phys. Chem., Aug. 2018.
[5] A. Henglein, “Physicochemical Properties of Small Metal Particles in Solution: ‘Microelectrode’ Reactions, Chemisorption, Composite Metal Particles, and the Atom-to-Metal Transition,” J. Phys. Chem., vol. 97, no. 21, pp. 5457–5471, May 1993.
[6] B. I. Kharisov, O. V. Kharissova, and U. Ortiz Méndez, Radiation synthesis of materials and compounds. CRC Press, Taylor & Francis Group, 2013.
[7] J. L. Marignier, J. Belloni, M. O. Delcourt, and J. P. Chevalier, “Microaggregates of non-noble metals and bimetallic alloys prepared by radiation-induced reduction,” Nature, vol. 317, no. 6035, pp. 344–345, Sep. 1985.
[8] C. C. J. Seechurn, M. O. Kitching, T. J. Colacot, and and V. Snieckus, “Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize,” Angew. Chemie Int. Ed., vol. 51, no. 21, pp. 5062–5085, May 2012.
[9] A. Biffis, P. Centomo, A. Del Zotto, and M. Zecca, “Pd Metal Catalysts for Cross-Couplings and Related Reactions in the 21st Century: A Critical Review,” Chem. Rev., vol. 118, no. 4, pp. 2249–2295, Feb. 2018.
[10] T. Iwasawa, M. Tokunaga, A. Y. Obora, and Y. Tsuji, “Homogeneous Palladium Catalyst Suppressing Pd Black Formation in Air Oxidation of Alcohols,” J. Am. Chem. Soc., vol. 126, no. 21, 2004.
[11] M. Rakap, “The highest catalytic activity in the hydrolysis of ammonia borane by poly(N-vinyl-2-pyrrolidone)-protected palladium–rhodium nanoparticles for hydrogen generation,” Appl. Catal. B Environ., vol. 163, pp. 129–134, Feb. 2015.
[12] M. Opanasenko, P. Stepnicka, and J. Cejka, “Heterogeneous Pd catalysts supported on silica matrices,” RSC Adv., vol. 4, no. 110, pp. 65137–65162, Nov. 2014.
[13] N. Khodabakhsh, S. H. Maryam, D. Abdollah, P. Farhad, and H. N. M. Reza, “Modification of Silica Using Piperazine for Immobilization of Palladium Nanoparticles: A Study of Its Catalytic Activity as an Efficient Heterogeneous Catalyst for Heck and Suzuki Reactions,” J. Iran. Chem. Soc., vol. 10, no. 3, pp. 527–534, Jan. 2013.
[14] F. P. da Silva, J. L. Fiorio, and L. M. Rossi, “Tuning the Catalytic Activity and Selectivity of Pd Nanoparticles Using Ligand-Modified Supports and Surfaces,” ACS Omega, vol. 2, no. 9, pp. 6014–6022, Sep. 2017.
[15] R. Liu, P. Liao, J. Liu, and P. Feng, “Responsive Polymer-Coated Mesoporous Silica as a pH-Sensitive Nanocarrier for Controlled Release,” Langmuir, vol. 27, no. 6, pp. 3095–3099, Mar. 2011.
[16] Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, “Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?,” Angew. Chemie Int. Ed., vol. 48, no. 1, pp. 60–103, Jan. 2009.
[17] G. Chen et al., “Interfacial electronic effects control the reaction selectivity of platinum catalysts,” Nat. Mater., vol. 15, no. 5, pp. 564–569, May 2016.
[18] S. G. Kwon et al., “Capping Ligands as Selectivity Switchers in Hydrogenation Reactions,” Nano Lett., vol. 12, no. 10, pp. 5382–5388, Oct. 2012.
[19] M. Barsbay and O. Güven, “A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner,” Radiat. Phys. Chem., vol. 78, no. 12, pp. 1054–1059, Dec. 2009.
[20] M. Barsbay and O. Güven, “RAFT mediated grafting of poly (acrylic acid)(PAA) from polyethylene/polypropylene (PE/PP) nonwoven fabric via preirradiation,” Polymer (Guildf)., vol. 54, no. 18, pp. 4838–4848, 2013.
[21] M. Barsbay and O. Güven, “Grafting in confined spaces: Functionalization of nanochannels of track-etched membranes,” Radiat. Phys. Chem., vol. 105, pp. 26–30, 2014.
[22] M. Barsbay, O. Güven, T. P. Davis, C. Barner-Kowollik, and L. Barner, “RAFT-mediated polymerization and grafting of sodium 4-styrenesulfonate from cellulose initiated via γ-radiation,” Polymer (Guildf)., vol. 50, no. 4, pp. 973–982, Feb. 2009.
[23] M. Barsbay, O. Güven, M. H. Stenzel, T. P. Davis, C. Barner-Kowollik, and L. Barner, “Verification of Controlled Grafting of Styrene from Cellulose via Radiation-Induced RAFT Polymerization,” Macromolecules, vol. 40, no. 20, pp. 7140–7147, Oct. 2007.
[24] G. Çelik, M. Barsbay, and O. Güven, “Towards new proton exchange membrane materials with enhanced performance via RAFT polymerization,” Polym. Chem., vol. 7, no. 3, pp. 701–714, Jan. 2016.
[25] Y.-J. Song, M. Wang, X.-Y. Zhang, J.-Y. Wu, and T. Zhang, “Investigation on the role of the molecular weight of polyvinyl pyrrolidone in the shape control of high-yield silver nanospheres and nanowires,” Nanoscale Res. Lett., vol. 9, no. 1, p. 17, Jan. 2014.
[26] H. Hirai and N. Yakura, “Protecting polymers in suspension of metal nanoparticles,” Polym. Adv. Technol., vol. 12, no. 11–12, pp. 724–733, 2001.
[27] R. G. Shimmin, A. B. Schoch, and P. V Braun, “Polymer size and concentration effects on the size of gold nanoparticles capped by polymeric thiols.,” Langmuir, vol. 20, no. 13, pp. 5613–20, Jun. 2004.
[28] C. M. Chan, A. T. Ko, and H. Hiraoka, “Polymer surface modificatin by plasmas and photons,” Surf. Sci. Rep., vol. 24, no. 1–2, pp. 3–54, 1996.
[29] A. S. Hoffman, “Surface modification of polymers: Physical, chemical, mechanical and biological methods,” Macromol. Symp., vol. 101, no. 1, pp. 443–454, Jan. 1996.
[30] R. N. Wahyu Nugroho, Modification of Polymeric Particles via Surface Grafting for 3d Scaffold Design. 2015.
[31] F. M. Michael, M. Khalid, R. Walvekar, H. Siddiqui, and A. B. Balaji, “Surface modification techniques of biodegradable and biocompatible polymers,” Elsevier, pp. 33–54, 2018.
[32] A. A. John et al., “Review: physico-chemical modification as a versatile strategy for the biocompatibility enhancement of biomaterials,” RSC Adv., vol. 5, no. 49, pp. 39232–39244, 2015.
[33] R. J. Young and P. A. L. Chapman, “Introduction to polymers,” Polym. Int., vol. 27, no. 2, pp. 207–208, Jan. 1992.
[34] F. J. Xu, Z. H. Wang, and W. T. Yang, “Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules,” Biomaterials, vol. 31, no. 12, pp. 3139–3147, Apr. 2010.
[35] A. Bhattacharya and B. N. Misra, “Grafting: a versatile means to modify polymers: Techniques, factors and applications,” Prog. Polym. Sci., vol. 29, no. 8, pp. 767–814, Aug. 2004.
[36] M. Ejaz, S. Yamamoto, K. Ohno, A. Y. Tsujii, and T. Fukuda, “Controlled Graft Polymerization of Methyl Methacrylate on Silicon Substrate by the Combined Use of the Langmuir−Blodgett and Atom Transfer Radical Polymerization Techniques,” Macromolecules, vol. 31, no. 17, pp. 5934–5936, 1998.
[37] X. Huang and M. J. Wirth, “Surface Initiation of Living Radical Polymerization for Growth of Tethered Chains of Low Polydispersity,” Macromolecules, vol. 32, no. 5, pp. 1694–1696, 1999.
[38] B. Z. And and W. J. Brittain, “Synthesis of Tethered Polystyrene-block-Poly(methyl methacrylate) Monolayer on a Silicate Substrate by Sequential Carbocationic Polymerization and Atom Transfer Radical Polymerization,” J. Am. Chem. Soc., vol. 121, no. 14, pp. 3557–3558, 1999.
[39] M. Husseman et al., “Controlled Synthesis of Polymer Brushes by ‘Living’ Free Radical Polymerization Techniques,” Macromolecules, vol. 32, pp. 1424–1431, 1999.
[40] Matyjaszewski Polymer Group, “Hybrid Brush Copolymers.” https://www.cmu.edu/maty/materials/Nanostructured-materials/hybrid-brush-copolymers.html. [Accessed: 22-May-2019].
[41] T. von W. And and T. E. Patten, “Preparation of Structurally Well-Defined Polymer−Nanoparticle Hybrids with Controlled/Living Radical Polymerizations,” J. Am. Chem. Soc., vol. 121, pp. 7409–7410, 1999.
[42] B. De Boer, H. K. Simon, M. P. L. Werts, E. W. Van Der Vegte, and G. Hadziioannou, “`Living’ free radical photopolymerization initiated from surface-grafted iniferter monolayers,” Macromolecules, vol. 33, no. 2, pp. 349–356, 2000.
[43] J. B. Kim, M. L. Bruening, and G. L. Baker, “Surface-initiated atom transfer radical polymerization on gold at ambient temperature,” Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem., vol. 41, no. 2, p. 1300, 2000.
[44] C. Barner-Kowollik, Handbook of RAFT polymerization. Weinheim, Germany: Wiley-VCH, 2008.
[45] M. Shamsipur, J. Fasihi, and K. Ashtari, “Grafting of Ion-Imprinted Polymers on the Surface of Silica Gel Particles through Covalently Surface-Bound Initiators: A Selective Sorbent for Uranyl Ion,” Anal. Chem., vol. 79, no. 18, pp. 7116–7123, Sep. 2007.
[46] B. Zdyrko and I. Luzinov, “Polymer Brushes by the ‘Grafting to’ Method,” Macromol. Rapid Commun., vol. 32, no. 12, pp. 859–869, Jun. 2011.
[47] A. E. Müftüoğlu and Y. Yağcı, “Fotopolimerizasyon yöntemiyle çapraz bağlı ve aşı kopolimerler hazırlanması,” itü, vol. 3, no. 1, pp. 73–78, 2005.
[48] M. Asai, D. Zhao, and S. K. Kumar, “Role of Grafting Mechanism on the Polymer Coverage and Self-Assembly of Hairy Nanoparticles,” ACS Nano, vol. 11, no. 7, pp. 7028–7035, Jul. 2017.
[49] M. Stamm, “Polymer Surface and Interface Characterization Techniques,” in Polymer Surfaces and Interfaces, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1–16, 2008.
[50] Z. Li, “Well-defined molecular brushes: Synthesis by a ‘grafting through’ strategy and self assembly into complicated hierarchical nanostructures Doctor of Philosophy,” Washington University, 2011.
[51] M. Zhang and A. H. E. Müller, “Cylindrical polymer brushes,” J. Polym. Sci. Part A Polym. Chem., vol. 43, no. 16, pp. 3461–3481, Aug. 2005.
[52] J. Zhao, G. Mountrichas, G. Zhang, and S. Pispas, “Thermoresponsive Core−Shell Brush Copolymers with Poly(propylene oxide)- block -poly(ethylene oxide) Side Chains via a ‘Grafting from’ Technique,” Macromolecules, vol. 43, no. 4, pp. 1771–1777, Feb. 2010.
[53] S. Edmondson and B. Zhu, “Applying ARGET ATRP to the Growth of Polymer Brush Thin Films by Surface-initiated Polymerization,” Aldrich Mater. Sci., pp. 12–14, 2012.
[54] H. Arslan, “Block and Graft Copolymerization by Controlled/Living Radical Polymerization Methods,” Polymerization, pp. 279–287, Dec. 2012.
[55] V. Mishra and R. Kumar, “Living Radical Polymerization: A Review,” vol. 56, pp. 141–176, 2012.
[56] G. Moad, E. Rizzardo, and S. H. Thang, “Radical addition–fragmentation chemistry in polymer synthesis,” Polymer, vol. 49, no. 5, pp. 1079–1131, Mar. 2008.
[57] R. H. Grubbs and W. Tumas, “Polymer synthesis and organotransition metal chemistry.,” Science, vol. 243, no. 4893, pp. 907–15, Feb. 1989.
[58] R. Ranjan, “Surface Modification of Silica Nanoparticles, Doctor of Philosophy,” University of Akron, 2008.
[59] K. Matyjaszewski and J. Spanswick, “Controlled/living radical polymerization,” Mater. Today, vol. 8, no. 3, pp. 26–33, Mar. 2005.
[60] K. Matyjaszewski, Y. Gnanou, and L. Leibler, Macromolecular engineering : precise synthesis, materials properties, applications. Wiley-VCH, 2007.
[61] C. D. Craver and C. E. Carraher, Applied polymer science : 21st century. Elsevier, 2000.
[62] H. Mark, “Carbanions living polymers and electron transfer processes. M. Szwarc, ed. John Wiley & Sons, Inc. New York, 1968.,” J. Appl. Polym. Sci., vol. 14, no. 3, pp. 859–859, Mar. 1970.
[63] H. L. Hsieh and R. P. Quirk, “Anionic polymerization : principles and practical applications.”https://trove.nla.gov.au/work/21907558?selectedversion=NBD12134956. [Accessed: 22-May-2019].
[64] K. (Krzysztof) Matyjaszewski, Cationic polymerizations : mechanisms, synthesis, and applications. Marcel Dekker, 1996.
[65] O. W. Webster, “Living Polymerization Methods,” Science, vol. 251, no. 4996, pp. 887–893, Feb. 1991.
[66] K. Matyjaszewski and T. P. Davis, Handbook of radical polymerization. Wiley-Interscience, 2002.
[67] V. Coessens and K. Matyjaszewski, “Synthesis of polymers wıth amino end groups by atom transfer radical polymerization,” J. Macromol. Sci. Part A, vol. 36, no. 5–6, pp. 811–826, Jun. 1999.
[68] K. Matyjaszewski, “Non-living Cationic Polymerization of Alkenes,” Polym. Int., vol. 35, pp. 1–26, 1994.
[69] T. E. Patten and K. Matyjaszewski, “Atom Transfer Radical Polymerization and the Synthesis of Polymeric Materials,” Adv. Mater., vol. 10, no. 12, pp. 901–915, Aug. 1998.
[70] H. R. Kricheldorf, O. Nuyken, and G. Swift, Handbook of Polymer Synthesis: Second Edition. New York, 2005.
[71] T. E. Patten and K. Matyjaszewski, “Copper(I)-Catalyzed Atom Transfer Radical Polymerization,” Acc. Chem. Res., vol. 32, no. 10, pp. 895–903, 1999.
[72] E. Khosravi and T. Szymanska-Buzar, “Ring Opening Metathesis Polymerisation and Related Chemistry.” https://www.researchgate.net/publication/282444950 _Ring_Opening_Metathesis_Polymerisation_and_Related_Chemistry.[Accessed: 26-May-2019].
[73] K. Matyjaszewski, M. J. Ziegler, S. V. Arehart, D. Greszta, and T. Pakula, “Gradient copolymers by atom transfer radical copolymerization,” J. Phys. Org. Chem., vol. 13, no. 12, pp. 775–786, 2000.
[74] W. Jakubowski, A. K. Min, and K. Matyjaszewski, “Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization of Styrene,” Macromolecules, vol. 39, no. 1, pp. 39–45, 2005.
[75] K. Matyjaszewski et al., “Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents,” Proc. Natl. Acad. Sci., vol. 103, no. 42, pp. 15309–15314, Oct. 2006.
[76] W. Jakubowski et al., “Contents Full Papers Polystyrene with Improved Chain-End Functionality and Higher Molecular Weight by ARGET ATRP Conductive Polymer Electrolytes Derived from Poly(norbornene)s with Pendant Ionic Imidazolium Moieties Novel Amphiphilic Styrene-Based Block C,” Macromol. Chem. Phys, vol. 209, pp. 3–8, 2008.
[77] K. Matyjaszewski et al., “Role of Cu0 in Controlled/‘Living’ Radical Polymerization,” Macromolecules, vol. 40, no. 22, pp. 7795–7806, 2007.
[78] F. E. McDonald, “Alkynolendo-Cyclo isomerizations and Conceptually Related Transformations,” Chem. - A Eur. J., vol. 5, no. 11, pp. 3103–3106, Nov. 1999.
[79] H. Dong and K. Matyjaszewski, “Arget ATRP of 2-(Dimethylamino)ethyl Methacrylate as an Intrinsic Reducing Agent,” Macromolecules, vol. 41, no. 19, pp. 6868–6870, Oct. 2008.
[80] V. Mittal, N. B. Matsko, A. Butté, and M. Morbidelli, “Synthesis of temperature responsive polymer brushes from polystyrene latex particles functionalized with ATRP initiator,” Eur. Polym. J., vol. 43, no. 12, pp. 4868–4881, Dec. 2007.
[81] K. Matyjaszewski and S. G. Gaynor, “Free Radical Polymerization,” Appl. Polym. Sci. 21st Century, pp. 929–977, Jan. 2000.
[82] “Polymerization process and polymers produced thereby,” 11-Jul-1984. https://patents.google.com/patent/US4581429A/en. [Accessed: 26-May-2019].
[83] J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes, and B. Charleux, “Nitroxide-mediated polymerization,” Prog. Polym. Sci., vol. 38, no. 1, pp. 63–235, Jan. 2013.
[84] “Block copolymer synthesis using a commercially available nitroxide mediated radical polymerization (NMP) initiator.” https://www.researchgate.net/publication/ 286782734_Block_copolymer_synthesis_using_a_commercially_available_nitroxide-mediated_radical_polymerization_NMP_initiator. [Accessed: 26-May-2019].
[85] H. Fischer, “The Persistent Radical Effect: A Principle for Selective Radical Reactions and Living Radical Polymerizations,” Chem. Rev, vol. 101, no. 12, pp. 3581–3610, 2001.
[86] M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, and G. K. Hamer, “Narrow molecular weight resins by a free-radical polymerization process,” Macromolecules, vol. 26, no. 11, pp. 2987–2988, May 1993.
[87] A. Nilsen and R. Braslau, “Nitroxide decomposition: Implications toward nitroxide design for applications in living free-radical polymerization,” J. Polym. Sci. Part A Polym. Chem., vol. 44, no. 2, pp. 697–717, 2006.
[88] R. B. Grubbs, “Nitroxide-Mediated Radical Polymerization: Limitations and Versatility,” Polym. Rev., vol. 51, no. 2, pp. 104–137, Apr. 2011.
[89] M. Hosseini and A. S. H. Makhlouf, Industrial Applications for Intelligent Polymers and Coatings. Cham: Springer International Publishing, 2016.
[90] K. Matyjaszewski and N. V. Tsarevsky, “Nanostructured functional materials prepared by atom transfer radical polymerization,” Nat. Chem., vol. 1, no. 4, pp. 276–288, Jul. 2009.
[91] M. Ouchi, T. Terashima, and M. Sawamoto, “Transition Metal-Catalyzed Living Radical Polymerization: Toward Perfection in Catalysis and Precision Polymer Synthesis,” Chem. Rev., vol. 109, no. 11, pp. 4963–5050, Nov. 2009.
[92] M. Destarac, D. Charmot, X. Franck, and S. Z. Zard, “Dithiocarbamates as universal reversible addition-fragmentation chain transfer agents,” Macromol. Rapid Commun., vol. 21, no. 15, pp. 1035–1039, Oct. 2000.
[93] R. T. A. Mayadunne et al., “Living Polymers by the Use of Trithiocarbonates as Reversible Addition-Fragmentation Chain Transfer (RAFT) Agents: ABA Triblock Copolymers by Radical Polymerization in Two Steps,” Macromolecules, vol. 33, no. 2, pp. 243–245, 2000.
[94] R. F. And and A. Ajayaghosh, “Minimization of Homopolymer Formation and Control of Dispersity in Free Radical Induced Graft Polymerization Using Xanthate Derived Macro-photoinitiators,” Macromolecules, vol. 33, no. 13, pp. 4699–4704, 2000.
[95] G. Moad, E. Rizzardo, and S. H. Thang, “Toward Living Radical Polymerization,” Acc. Chem. Res., vol. 41, no. 9, pp. 1133–1142, Sep. 2008.
[96] J. Chiefari et al., “Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process,” Macromolecules, vol. 31, pp. 5559–5562, 1998.
[97] D. A. Shipp, “Living Radical Polymerization: Controlling Molecular Size and Chemical Functionality in Vinyl Polymers,” J. Macromol. Sci. Part C Polym. Rev., vol. 45, no. 2, pp. 171–194, Apr. 2005.
[98] J Chiefari et al., “Thiocarbonylthio Compounds (SC(Z)S−R) in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Effect of the Activating Group Z,” Macromolecules, vol. 36, no. 7, pp. 2273–2283, 2003.
[99] G. Moad, Y. K. Chong, A. Postma, E. Rizzardo, and S. H. Thang, “Advances in RAFT polymerization: the synthesis of polymers with defined end-groups,” Polymer (Guildf)., vol. 46, no. 19, pp. 8458–8468, Sep. 2005.
[100] R. T. A. Mayadunne, J. Jeffery, A. Graeme Moad, and Ezio Rizzardo, “Living Free Radical Polymerization with Reversible Addition−Fragmentation Chain Transfer (RAFT Polymerization): Approaches to Star Polymers,” Macromolecules, vol. 36, no. 5, pp. 1505–1513, 2003.
[101] S. H. Thang, (Bill)Y.K. Chong, R. T. A. Mayadunne, G. Moad, and E. Rizzardo, “A novel synthesis of functional dithioesters, dithiocarbamates, xanthates and trithiocarbonates,” Tetrahedron Lett., vol. 40, no. 12, pp. 2435–2438, Mar. 1999.
[102] R. T. A. et al., Macromolecules., vol. 33, no. 2. American Chemical Society, 1968.
[103] X. Tian, J. Ding, B. Zhang, F. Qiu, X. Zhuang, and Y. Chen, “Recent advances in RAFT polymerization: Novel initiation mechanisms and optoelectronic applications,” Polymers (Basel)., vol. 10, no. 3, 2018.
[104] I. W. Hamley, Developments in block copolymer science and technology. J. Wiley, 2004.
[105] D. J. Keddie, G. Moad, E. Rizzardo, and S. H. Thang, “RAFT Agent Design and Synthesis,” Macromolecules, vol. 45, no. 13, pp. 5321–5342, Jul. 2012.
[106] S. H. Thang, (Bill)Y.K. Chong, R. T. A. Mayadunne, G. Moad, and E. Rizzardo, “A novel synthesis of functional dithioesters, dithiocarbamates, xanthates and trithiocarbonates,” Tetrahedron Lett., vol. 40, no. 12, pp. 2435–2438, Mar. 1999.
[107] D. Taton, A.-Z. Wilczewska, and M. Destarac, “Direct Synthesis of Double Hydrophilic Statistical Di- and Triblock Copolymers Comprised of Acrylamide and Acrylic Acid Units via the MADIX Process,” Macromol. Rapid Commun., vol. 22, no. 18, p. 1497, Dec. 2001.
[108] J. Loiseau et al., “Synthesis and Characterization of Poly(acrylic acid) Produced by RAFT Polymerization. Application as a Very Efficient Dispersant of CaCO3, Kaolin, and TiO2,” Macromolecules, vol. 36, no. 9, pp. 3066–3077, 2003.
[109] J. J. Grodzinski, Living and Controlled Polymerization: Synthesis, Characterization, and Properties of the Respective Polymers and Copolymers. New York, 2006.
[110] B. Ray et al., “Synthesis of Isotactic Poly(N-isopropylacrylamide) by RAFT Polymerization in the Presence of Lewis Acid,” Macromolecules, vol. 36, no. 3, pp. 543–545, 2003.
[111] M. Yin, Synthesis and Controlled Radical Polymerization of Multifunctional Monomers. Dresden, 2004.
[112] G. Çelik, “Poli(etilen-alt-tetrafloroetilen) (ETFE) Ardışık Kopolimer Filmine Raft Yöntemi ve Radyasyon Kullanılarak Stiren Aşılanması ve Yakıt Pili Membranı Hazırlanması,” Hacettepe Üniverisitesi, 2013.
[113] W. C. Wang, K. G. Neoh, and E. T. Kong, “Surface functionalization of Fe3O4 magnetic nanoparticles via RAFT-mediated graft polymerization,” Macromol. Rapid Commun., vol. 27, no. 19, pp. 1665–1669, 2006.
[114] A. N. Shipway and I. Willner, “Nanoparticles as structural and functional units in surface-confined architectures,” Chem. Commun., no. 20, pp. 2035–2045, Oct. 2001.
[115] K. L. Mittal, Silanes and Other Coupling Agents. Boston, 2009.
[116] C. Sha et al., “Total Synthesis of (−)Dendrobine via α-Carbonyl Radical Cyclization,” Langmuir, vol. 119, no. 18, pp. 4130–4135, 1997.
[117] T. Yonezawa, A. Kuniko Imamura, and Nobuo Kimizuka, “Direct Preparation and Size Control of Palladium Nanoparticle Hydrosols by Water-Soluble Isocyanide Ligands,” Langmuir, vol. 17, no. 16, pp. 4701–4703, 2001.
[118] M. M. Demir et al., “Palladium Nanoparticles by Electrospinning from Poly(acrylonitrile-co-acrylic acid)-PdCl2 Solutions. Relations between Preparation Conditions, Particle Size, and Catalytic Activity,” Macromolecules, vol. 37, no. 5, pp. 1787–1792, 2004.
[119] H. Thiele and H. von Levern, “Synthetic protective colloids,” J. Colloid Sci., vol. 20, no. 7, pp. 679–694, Sep. 1965.
[120] S. V. Jadhav et al., “Studies on colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia,” New J. Chem., vol. 37, no. 10, p. 3121, Sep. 2013.
[121] G. Lu et al., “Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation,” Nat. Chem., vol. 4, no. 4, pp. 310–316, Apr. 2012.
[122] H. Kung, “Applied Catalysis A: General,” Sci. Direct, vol. 482, pp. 1–406.
[123] M. Bahadory, “Synthesis of noble metal nanoparticles,” Mater. Sci. Eng. C, vol. 22, no. August, p. 204, 2008.
[124] R. Si, Y.-W. Zhang, L.-P. You, and C.-H. Yan, “Self-Organized Monolayer of Nanosized Ceria Colloids Stabilized by Poly(vinylpyrrolidone),” J. Phys. Chem. B, vol. 110, no. 12, pp. 5994–6000, Mar. 2006.
[125] W. A. Al-Saidi, H. Feng, and K. A. Fichthorn, “Adsorption of Polyvinylpyrrolidone on Ag Surfaces: Insight into a Structure-Directing Agent,” Nano Lett., vol. 12, no. 2, pp. 997–1001, Feb. 2012.
[126] “Polyvinylpyrrolidone - an overview,” Science Direct. https://www.sciencedirect. com/topics/agricultural-and-biological-sciences/polyvinylpyrrolidone. [Accessed: 27-May-2019].
[127] N. Gaponik et al., “Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes,” J. Phys. Chem. B, vol. 106, no. 29, pp. 7177–7185, 2002.
[128] T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and Applications of Colloidal Nonspherical Noble Metal Nanoparticles,” Adv. Mater., vol. 22, no. 16, pp. 1805–1825, Apr. 2010.
[129] C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and Properties of Nanocrystals of Different Shapes,” Chem. Rev., vol. 105, no. 4, pp. 1025–1102, Apr. 2005.
[130] R. Ameloot et al., “Metal-Organic Framework Single Crystals as Photoactive Matrices for the Generation of Metallic Microstructures,” Adv. Mater., vol. 23, no. 15, pp. 1788–1791, Apr. 2011.
[131] A. G. Chmielewski, D. K. Chmielewska, J. Michalik, and M. H. Sampa, “Prospects and challenges in application of gamma, electron and ion beams in processing of nanomaterials,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 265, no. 1, pp. 339–346, Dec. 2007.
[132] A. Henglein and D. Meisel, “Radiolytic Control of the Size of Colloidal Gold Nanoparticles,” Langmuir, vol. 14, no. 26, pp. 7392–7396, 1998.
[133] H. G. Elias, Macromolecules: Volume 2: Synthesis, Materials, and Technology. New York, 1984.
[134] “What is Radiation? – Mission to Mars.” https://sites.duke.edu/missiontomars/the-mission/radiation/what-is-radiation/. [Accessed: 27-May-2019].
[135] J. Belloni, M. Mostafavi, H. Remita, J.-L. Marignier, and and M.-O. Delcourt, “Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids,” New J. Chem., vol. 22, no. 11, pp. 1239–1255, Jan. 1998.
[136] H. Remita and S. Remita, “Metal Clusters and Nanomaterials: Contribution of Radiation Chemistry,” in Recent Trends in Radiation Chemistry, World Scientific, pp. 347–383, 2010.
[137] H. A. Schwarz and R. W. Dodson, “Reduction potentials of CO2- and the alcohol radicals,” J. Phys. Chem., vol. 93, no. 1, pp. 409–414, Jan. 1989.
[138] J. Belloni, “Nucleation, growth and properties of nanoclusters studied by radiation chemistry: Application to catalysis,” Catal. Today, vol. 113, no. 3–4, pp. 141–156, Apr. 2006.
[139] K.-P. Lee, A. I. Gopalan, P. Santhosh, S. H. Lee, and Y. C. Nho, “Gamma radiation induced distribution of gold nanoparticles into carbon nanotube-polyaniline composite,” Compos. Sci. Technol., vol. 67, no. 5, pp. 811–816, Apr. 2007.
[140] A. B. Zezin, V. B. Rogacheva, V. I. Feldman, P. Afanasiev, and A. A. Zezin, “From triple interpolyelectrolyte-metal complexes to polymer-metal nanocomposites.,” Adv. Colloid Interface Sci., vol. 158, no. 1–2, pp. 84–93, Jul. 2010.
[141] D. Mott, J. Galkowski, L. Wang, A. J Luo, and C.-J. Zhong, “Synthesis of Size-Controlled and Shaped Copper Nanoparticles,” Langmuir, vol. 23, no. 10, pp. 5740–5745, 2007.
[142] S. D. Sütekin and O. Güven, “Radiation-induced controlled polymerization of acrylic acid by RAFT and RAFT-MADIX methods in protic solvents,” Radiat. Phys. Chem., vol. 142, pp. 82–87, Jan. 2018.
[143] S. P. Le-Masurier, G. Gody, S. Perrier, and A. M. Granville, “One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and ‘grafting from’ RAFT polymerization,” Polym. Chem., vol. 5, no. 8, pp. 2816–2823, Mar. 2014.
[144] I. Száraz and W. Forsling, “A spectroscopic study of the solvation of 1-vinyl-2-pyrrolidone and poly(1-vinyl-2-pyrrolidone) in different solvents,” Polymer (Guildf)., vol. 41, no. 13, pp. 4831–4839, Jun. 2000.
[145] Y. Liu, Q. Ma, X. Dong, W. Yu, J. Wang, and G. Liu, “A novel strategy to directly fabricate flexible hollow nanofibers with tunable luminescence–electricity–magnetism trifunctionality using one-pot electrospinning,” Phys. Chem. Chem. Phys., vol. 17, no. 35, pp. 22977–22984, Aug. 2015.
[146] I. V. Korolkov et al., “Electron/gamma radiation-induced synthesis and catalytic activity of gold nanoparticles supported on track-etched poly(ethylene terephthalate) membranes,” Mater. Chem. Phys., vol. 217, pp. 31–39, Sep. 2018.
[147] S.-D. Oh et al., “Dispersing of Ag, Pd, and Pt–Ru alloy nanoparticles on single-walled carbon nanotubes by γ-irradiation,” Mater. Lett., vol. 59, no. 10, pp. 1121–1124, Apr. 2005.
[148] A. R. Anderson and E. J. Hart, “Radiation chemistry of water with pulsed high intensity electron beams,” J. Phys. Chem., vol. 66, no. 1, pp. 70–75, Jan. 1962.
[149] G. R. Dey, “Reduction of the copper ion to its metal and clusters in alcoholic media: A radiation chemical study,” Radiat. Phys. Chem., vol. 74, no. 3–4, pp. 172–184, Oct. 2005.
[150] J. V. Rojas and C. H. Castano, “Production of palladium nanoparticles supported on multiwalled carbon nanotubes by gamma irradiation,” Radiat. Phys. Chem., vol. 81, no. 1, pp. 16–21, Jan. 2012.
[151] M. Rakap, “Poly(N-vinyl-2-pyrrolidone)-stabilized palladium platinum nanoparticles catalyzed hydrolysis of ammonia borane for hydrogen generation,” J. Power Sources, vol. 276, pp. 320–327, Feb. 2015.
[152] M. Mostafavi, G. R. Dey, A. L. François, and J. Belloni, “Transient and Stable Silver Clusters Induced by Radiolysis in Methanol,” J. Mater. Chem. A, vol. 106, no. 43, pp. 10184–10194, 2002.
[153] G. R. Dey and K. Kishore, “Silver clusters in 2-propanol: a radiation chemical study,” Radiat. Phys. Chem., vol. 72, no. 5, pp. 565–573, Apr. 2005.
[154] C. Jonah and D. Bartels, “Radiolytically Induced Formation and Optical Absorption Spectra of Colloidal Silver Nanoparticles in Supercritical Ethane ,” J. Phys. Chem. B, vol. 105, no. 5, pp. 954–959, 2001.
[155] M. Sarmah, A. B. Neog, P. K. Boruah, M. R. Das, P. Bharali, and U. Bora, “Effect of Substrates on Catalytic Activity of Biogenic Palladium Nanoparticles in C–C Cross-Coupling Reactions,” ACS Omega, vol. 4, no. 2, pp. 3329–3340, Feb. 2019.
[156] P. A. Namini, A. A. Babaluo, and B. Bayati, “Palladium nanoparticles synthesis using polymeric matrix: poly(ethyleneglycol) molecular weight and palladium concentration effects,” Int. J. Nanosci. Nanotechnol., vol. 3, no. 1, pp. 37–44, Dec. 2007.
[157] J. A. Johnson, J. J. Makis, K. A. Marvin, S. E. Rodenbusch, and K. J. Stevenson, “Size-Dependent Hydrogenation of p- Nitrophenol with Pd Nanoparticles Synthesized with Poly(amido)amine Dendrimer Templates,” J. Phys. Chem. C, vol. 117, no. 44, pp. 22644–22651, Nov. 2013.
[158] S. Singh, N. Kumar, M. Kumar, Jyoti, A. Agarwal, and B. Mizaikoff, “Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles,” Chem. Eng. J., vol. 313, pp. 283–292, Apr. 2017.
[159] Z. D. Pozun et al., “A Systematic Investigation of p -Nitrophenol Reduction by Bimetallic Dendrimer Encapsulated Nanoparticles,” J. Phys. Chem. C, vol. 117, no. 15, pp. 7598–7604, Apr. 2013.
[160] P. Suchomel et al., “Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity,” Sci. Rep., vol. 8, no. 1, p. 4589, Dec. 2018.
[161] Y. Yu, K. Kant, J. G. Shapter, J. Addai-Mensah, and D. Losic, “Gold nanotube membranes have catalytic properties,” Microporous Mesoporous Mater., vol. 153, pp. 131–136, May 2012.
[162] C. A. Jaska et al., “Poisoning of Heterogeneous, Late Transition Metal Dehydrocoupling Catalysts by Boranes and Other Group 13 Hydrides,” J. Am. Chem. Soc., vol. 127, 2005.
[163] M. Flytzani-Stephanopoulos, I. S. Nam, X. Verykios, H. Yamashita, R. W. McCabe, and G. L. Puma, “Applied Catalysis B: Environmental,” Elsevier, vol. 89, no. 1–2, pp. 104–110, 2009. | tr_TR |