Basit öğe kaydını göster

dc.contributor.advisorYıldırım, Bora
dc.contributor.authorYalçın, Metin Koray
dc.date.accessioned2018-06-11T08:05:00Z
dc.date.available2018-06-11T08:05:00Z
dc.date.issued2018
dc.date.submitted2018-05-29
dc.identifier.citation[1] State of the Art Broaching, William R. Stott, http://www.geartechnology.com/issues/0811x/broaching.pdf (Şubat, 2018). [2] Broaching Machine manufacturing & sale company date, http://www.august-berghaus.de/en/services/broaching-machines/ (Şubat, 2018). [3] A New Trend in Broaching Technology, Ken Nemec, http://www.gearsolutions.com/article/detail/5491/a-new-trend-in-broaching-technology (Şubat, 2018). [4] KUTAY, M. Güvem, Dişli Çarklar, Genel İsviçre, Baden, 2010, http://www.guven-kutay.ch/disliler/12_00_disliler_genel.pdf (Şubat, 2018). [5] MAAG Taschenbuch, MAAG.Zahnräder Aktiengeselschaft CH-8023 Zürich / Schweiz, 2010. [6] Richard G., Budynas and Keith J., Nisbett, Shigley’s Mechanical Engineering Design, 8th. Edition, McGraw-Hill Companies, 2008. [7] Akkurt M., Kent M., Makina Elemanları, Birinci Cilt, 2.Baskı, Birsen Yayınevi, 1986. [8] Alsaran A., Makine Elemanları II Ders Notları, T.C. Kars Kafkas Üniversitesi, 2018. [9] Anonim, Özel üretim teknikleri, Dişli üretim metotları, https://www.makinaegitimi.com/makine-elemanlari/disli-carklar/disli-cark-uretim-yontemleri.html, (Mart, 2018) [10] Kısa M., Özel Üretim Teknikleri, Furkan Ofset, Bursa, 2002. [11] Yıldırım B., Yalçın M.K., Ustaoğlu E., 01042.STZ-2011-2 Kodlu San-Tez Projesi Teknik Raporu, Ankara, Eylül, 2015. [12] Anonim, Talaşlı İmalatın Tarihçesi, http://dogamak.com/Haber/26/Talasli-imalatin-tarihcesi (Mart, 2018). [13] Budynas, Richard G., Advanced Strength and Applied Stress Analysis, Second Edition, McGraw-Hill Companies, 1999. [14] Ay, İ. (t.y)., Strain Ölçme Ders Notları, Konstrüksiyon ve İmalat ABD, Balıkesir Üniversitesi, Balıkesir, 2016. [15] Oxley, P.L.B., “Mechanics of Machining, An Analytical Approach to Assessing Machinability”, Halsted Press, New York, 1989. [16] Şahin, Y., Talaş Kaldırma Prensipleri-1, Nobel Yayın Dağıtım, Ankara, Türkiye, 2000. [17] Astakhov and Shvets, The Assessment of Plastic Deformation İn Metal Cutting, Journal of Matarial Processing Technology, Vol. 146, pp. 193-202, 2004. [18] Pereira and Lerch, Effects of Heat Treatment on The Ballistic İmpact Properties Of Inconel 719 For Jet Engine Fan Containment Applications, Int. J. Of Impact Engineering, Vol. 25, №8, pp. 715-733, 2001. [19] LAL G.K., Introductions to Machining Science, Lee and Shaffer 1951, pp. 58, New Age Internatıonal Publisher, 2003. [20] Lee, An Experimental And Theoretical Investigation for Machining of Hardened Alloy Steel, PhD Thesis in School of grinding force mathematical model, CIRP Annals Manufacture Technology, Vol. 29, pp. 245-249, 2001. [21] Wen Li, Efficiency of Manufacturing Processes Wince 200 Spring, International Publishing Switzerland, 2015. [22] Marinov B., Hr. Hristov, G. Voukov, Dynamic Sizing of the Links of a Multi-Cylinder Engine, Reduced to a Two-Mass System, Mechanics of Machines Magazine, Vol. 28, №4, 1999. [23] Sartkulvanich and Altan, Effects Of Flow Stress And Frıctıon Models In Fınıte Element Sımulatıon Of Orthogonal Cuttıng - A Sensıtıvıty Analysıs, Machining Science and Technology An International Journal Vol. 9, 2005. [24] Abukhshim NA, Mativenga PT, Sheikh MA, Heat Generation And Temperature Prediction In Metal Cutting: A Review And Implications For High Speed Machining. Int. J. Mach. Tools Manuf. Vol.46, pp. 782-800, 2006. [25] Sadik, M. I. and Lindstrom, B., The Role of Tool–Chip Contact Length in Metal Cutting”, J. Mater. Processing Technol., Vol. 37, pp. 613–627, 1993. [26] J.E. Childs, A.T. Curns, M.E. Dey, L.A. Real, L. Feinstein, et al., Predicting the local dynamics of epizootic rabies among raccoons in the United States Proceedings of the National Academy of Sciences of the USA, Vol.97, pp. 13666-13671, 2000. [27] Kurt A., Talaş Kaldırma Sırasında Oluşan Kesme Kuvvetleri Ve Mekanik Gerilmelerin Deneysel Olarak İncelenmesi Ve Matematiksel Modellerinin Oluşturulması, Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2006. [28] Şeker, U., Takım Tasarımı Ders Notları, Sayfa 32, 1997. [29] Aslantaş, K., Metal Kesme Teorisi Ders Notları, Afyon Kocatepe Üniversitesi, Afyonkarahisar, Bölüm 7, Sayfa 11, 2009. [30] Zorev, N. N., Inter-relationship between shear processes occurring along, tool face and shear plane in metal cutting, International Research in Production Engineering, pp.42-49, New York: ASME, 1963. [31] Shaw, M.C., Cook, N.H., Smith, P.A., The mechanics of three-dimensional cutting operations, Transactions of The ASME, Vol.74, pp. 1055–1064, 1952. [32] Merchant M.E., Mechanics of The Metal Cutting Process II. Plasticity Conditions in Orthogonal Cutting, J Appl Phys Vol.16, №6, pp. 318–324, 1945. [33] Jaspers, S. P. F. C., Metal Cutting Mechanics and Material Behavior, PhD thesis, Technische Universiteit Eindhoven, 1999. [34] Boy, M., Kesme Parametrelerine Bağlı Olarak Talaş Arka Yüzey Sıcaklığının Deneysel Olarak İncelenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2004. [35] Trent, E.M., Metal Cutting and the Tribology of Seizure: II. Movement of Work Material Over the Tool in Metal Cutting, Wear Vol. 128, pp. 46-64, 1988. [36] Shaw, M.C., Metal Cutting Principles, Oxford University Press, London, pp. 594, 1984. [37] Young, H.T., and Chou, T.L., Modelling of Tool/Chip Interface Temperature Distribution in Metal Cutting, Int. J. Mech. Sci., Vol. 36, №11, pp. 931–943, 1994. [38] Lazoglu I., Altintas Y., Prediction of Tool And Chip Temperature in Continuous and Interrupted Machining, International Journal of Machine Tools and Manufacture Vol.42, №9, pp. 1011-1022 197, 2002. [39] A.J.R. Smith, J.A. Armarego, Temperature Prediction in Orthogonal Cutting with A Finite Difference Approach, Annals of CIRP, 1981. [40] İren M., Sonlu Elemanlar Yöntemi ve Bu Yöntemin Sınır Değer Problemlerine Uygulanması, Nisan, 2018. [41] Topçu, M., ve Taşgetiren, S., Mühendisler İçin Sonlu Eleman Metodu, Pamukkale Üniversitesi Mühendislik Fakültesi, Denizli, Ders Kitapları Yayın No: 007, Sayfalar 225-230, 1998. [42] Fish, J., Belytschko, T., A First Course in Finite Elements, John Wiley & Sons, Chichester, England, pp. 1-9, 2007. [43] Ledley, R.S., Huang, H.K., Linear Model of Tooth Displacement by Applied Forces, J Dent Res., Vol.47, pp. 427-432., 1968. [44] Farah, J.W., Craig, R.G., Finite Element Stress Analysis of a Restored Axisymmetric First Molar. J Dent Res., Vol. 53, pp. 859-866, 1974. [45] Güler M.S., Doktora Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Erzurum, 2013. [46] Kara F., Yüksek Lisanas Tezi, Afyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsü, Afyonkarahisar, 2010. [47] Fevacı, M.C., Sonlu Elemanlar Metodu ile Modellemede Temel Prensipler, Mühendis ve Makina, Vol.470, 1999. [48] Kurtay T., Sonlu Elemanlar Yöntemine Giriş, İ.T.Ü. Makina Fakültesi Ofset Atölyesi, İstanbul, 1980. [49] Arıkan M.A.S., Sonlu Elemanlar Metodunun Mühendislikte Uygulamaları, Orta Doğu Üniversitesi, Makine Mühendisliği Bölümü, 2018. [50] Asmussen, E., Peutzfeldt, A., Class I and Class II Restorations of Resin Composite: An FEM Analysis of The Influence of Modulus of Elasticity on Stresses Generated by Occlusal Loading, Dent Mater., Vol. 24, pp. 600-605, 2008. [51] Knight, C.E., The Finite Element Method in Mechanical Design, PWS- KENT Publishing Company, Boston, 1993. [52] RADIOSS, Radioss Theory Manual 13.0, Large Displacement Finite Element Analysis, USA, 2014. [52] Liyan, Y.E., Xifeng, L.I., Chen, J., Numerical Simulation And Experimental Study Of 304 Metastable Austenitic Stainless Steel in Cup Drawing, National Engineering Research Center of Die & Mold CAD, Shangai Jiao Tong University, 2013. [53] Björkström, D., Farkas, L., FEM Simulation of Electrohydraulic Forming, Kungliga Tekniska Högskolan, Vol.T-03, 2008. [54] R.M’Saoubi, High-Speed Shear Tests for The İdentification of The Johnson–Cook, ENSAM-Paris: PhD. Thesis; 1998. [55] Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice-Hall Inc.,USA, 1982. [56] Ugural, A.C., and Fenster, S.K., Advanced Strength And Applied Elasticity, 3rd Edition, Printice Hall, New Jersey, pp. 28-31, 1995. [57] Belytschko T., Shau-Jen Ong J., Kam Liu W., Kennedy J. M., Hourglass Control In Linear And Nonlinear Problems, Computer Methods in Applied Mechanics and Engineering, Vol. 43, Issue 3, pp. 251-276, 1984. [58] Çayıroğlu İ., Bilgisayar Destekli Tasarım ve Analiz (ANSYS), Karabük Üniversitesi Mühendislik Fakültesi, Karabük, Nisan, 2018. [59] Özdemir N.Ö., Sonlu Elemanlar Yöntemi ile Yorulma Mekaniği ve Uygulamaları, Karadeniz Teknik Üniversitesi, Mühendislik Fakültesi, Bitirme Çalışması, Trabzon, 2009. [60] Hidrosan Hidrolik Makine Sanayi Dikey Broş Tezgâhı (60t), https://makinecim.com/ilan_363899_60-Ton-Bros-Presi (Mayıs, 2015) [61] Kronenberg, M., Machining Science and Application – Theory and Practice fo Operation and Development of Machining Processes, 1st Edtion, Pergamon Press, UK, 1966. [62] Astakhov, V.P., Tribology of Metal Cutting, 1st Edition, ELSEVIER, UK, 2006.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/4534
dc.descriptionTez çalışması; Bilim, Sanayi ve Teknoloji Bakanlığı Sanayi Tezleri Programı (SAN-TEZ) kapsamında proje ortağı bir firma ile yapılmıştır. Gizli, özel bilgi içeriği olabilir.tr_TR
dc.description.abstractIn this thesis study; it aims at broaching cutting tool design and manufacturing, which simulate of gear cutting with ANSYS and LS-DYNA software (with Finite Element Analysis) used broaching method. Broaching, is the serial production technology, which is used for shaping the pieces by removing shavings from their internal and external surface, this technology has maximum impact on cost reduction, provides high production rate and also can keep the surface quality at same level. In broaching process; broach tools, which are designed according to the properties of the pieces, is pulled or pushed from inside of the pieces by using vertical or horizontal broaching machines. Benefits of the broaching; The production by using broaching technology has a lot of benefits compared to the other techniques. Some of them; • Processing time is very short, • Provide high surface quality, • There is no need a second operation, • Provides measurement accuracy, • Allows for complex profiles, • Requires easy and cheap labor, • The investment cost is very low compared with the other technology, • Does not require qualified personnel. Usage area of the broaching technology; • A large number of the parts and gears production in automotive industry, • Manufacturing many parts in aircraft and aerospace technology, • The production of the weapon component in the weapon industry, • The production of the electric motors and turbine parts, • From the production of rack gears to the production of the lock, widely using in manufacturing. The main aim of this is R&D for the manufacturing of the broaching tools that are used for the internal gears manufacturing are used for the production of construction machinery such as tractor, loader, excavator and the cars with automatic transmission, and in this way meeting the increasing demands of internal and external market. In our country, these broaching tools have not been produced yet, in the world, just a few company produce and they become monopoly.tr_TR
dc.description.sponsorshipTez çalışması; Bilim, Sanayi ve Teknoloji Bakanlığı Sanayi Tezleri Programı (SAN-TEZ)tr_TR
dc.description.tableofcontentsÖZET i ABSTRACT iv TEŞEKKÜR vi İÇİNDEKİLER vii TABLOLAR ix ŞEKİLLER x SİMGELER VE KISALTMALAR xiv 1. GİRİŞ 1 2. LİTERATÜR ÖZETİ 3 2.1. Genel 3 2.2. Dişliler 5 2.2.1. Dişli Çeşitleri 6 2.2.2. Dişli Ana Kanunu 10 2.2.3. Dişli Çark Mekanizmaları 12 2.3. Dişli Çark Üretim Metotları 15 2.3.1. Döküm Metodu 15 2.3.2. Modül Frezeleri İle Dişli Üretim Metodu 16 2.3.3. Zımbalama (Punch) Metodu 16 2.3.4. Sinterleme Metodu 16 2.3.5. Lazer Kesim Metodu 17 2.3.6. Enjeksiyon (Püskürtme) Metodu 17 2.3.7. Haddeleme veya Ovalama Metodu 17 2.3.8. Şablona Göre Dişli Üretim Metodu 17 2.3.9. Yuvarlama Metodu 17 2.3.9.1. MAAG Sistemi 18 2.3.9.2. FELLOW Sistemi 20 2.3.9.3. Azdırma Metodu 22 2.3.10. Broşlama Metodu İle Dişli Üretimi 23 2.3.10.1. Broşlama Tekniği 24 2.3.10.2. Broş Tezgâhları 26 2.3.10.3. Broşlanan Malzemeler 30 2.3.10.4. Broşlar (Tığlar) 31 2.3.10.5. Broş Malzemeler 32 2.3.10.6. Broşların Tasarımı 33 2.3.10.7. Broş Tasarımında Kullanılan Teknik Hesaplamalar 40 2.3.10.8. Broşlamada Dikkat Edilecek Konular 43 2.3.10.9. Broşlamada Kesme Sıvıları 44 2.3.10.10. Broşların Çeşitleri 44 2.3.10.11. Broşlama Ve Broşlama Tekniğinin Avantajları Ve Dezavantajları 46 3. TALAŞLI İMALATTA TALAŞ KALDIRMA MEKANİĞİ 48 3.1. Talaşlı İmalatın Tarihçesi 48 3.2. Malzemelerin Karakteristik Mekanik Özellikleri 49 3.2.1. Gerilme ve Gerinim Kavramı 49 3.2.2. Elastisite Modülü 50 3.2.3. Poisson Oranı 51 3.2.4. Akma, Nihai Ve Kopma (Kırılma) Gerilmeleri Kavramları ve Diyagramı 52 3.3. Talaş Kaldırma Operasyonun Mekaniği 53 3.3.1. Talaş Kaldırma Teorileri 54 3.3.1.1. Ernst, Merchant ve Pispaen Yaklaşımı 54 3.3.1.2. Lee ve Shaffer Yaklaşımı 59 3.3.1.3. Oxley Yaklaşımı 62 3.4. Talaş Oluşumuna Etki Eden Faktörler 63 3.5. Ortogonal (Dik) ve Meyilli (Eğik) Kesme İşlemi 64 3.6. Kayma Düzlemi ve Kayma Açısı 66 3.7. Takım-Talaş Temas Boyu 67 3.8. Kesme Kuvvetleri ve Gerilmeler 68 3.8.1. Talaş Kaldırmada Oluşan Kesme Kuvvetleri 68 3.8.2. Talaş Kaldırmada Gerilme Dağılımı 70 3.8.2.1. İş Parçasında Gerilme 70 3.8.2.2. Takım-Talaş Ara Yüzeyindeki Gerilme 71 3.9. Takım-Talaş Ara Yüzeyindeki Sürtünme 72 3.10. Talaş Kaldırmada Isı Oluşumu 74 3.10.1. Kesme Sıcaklığı 75 4. SONLU ELEMANLAR METODU İLE ANALİZ 78 4.1. Giriş 78 4.2. Sonlu Elemanlar Metodunda Kullanılan Elemanlar 82 4.3. Sonlu Elemanlar Metodu ile Problem Çözümü 84 4.3.1. İki Boyutlu (2D) Modelleme 84 4.3.2. Üç Boyutlu (3D) Modelleme 86 4.4. Sonlu Elemanlar Metodu ile Analizde Malzeme Özellikleri Tayini 87 4.4.1. Johnson & Cook Malzeme Modeli 87 4.5. Eksplisit (Explicit) (Açık) Dinamik Analiz Teorisi 90 4.6. Eşdeğer (von-Mises) Gerilme 91 4.7. Hourglass Modları ve Hourglass Enerji 92 4.8. Sonlu Elemanlar Metodunun Avantajları ve Dezavantajları 95 5. ANALİZLER, SİMÜLASYONLAR VE DEĞERLENDİRMELER 97 5.1. Temas – Çarpışma Analizi ve Simülasyonu 101 5.2. Parça Koparma Analizi ve Simülasyonu 106 5.3. Talaş Kaldırma Analizi ve Simülasyonu 109 5.4. İç Yüzey Broşlama ile Çember Dişli Açma Analizi ve Simülasyonu 116 5.5. Dış Yüzey Broşlama ile Güneş Dişli Açma Analizi ve Simülasyonu 129 6. SONUÇLARIN DEĞERLENDİRİLMESİ VE ÖNERİLER 140 KAYNAKLAR 143 EKLER 147 ÖZGEÇMİŞ 151tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectBroş Tezgahı
dc.subjectBroş Tığı
dc.subjectÇember Dişli
dc.subjectDişli
dc.subjectDüşük Üretim Maliyeti
dc.subjectHassas Ölçüler
dc.subjectStandart Kalite
dc.subjectYüksek Üretim Kapasitesi
dc.titleBroş Kesici Takımların Dizaynı İçin Dişli Açma Simülasyonutr_TR
dc.title.alternativeSimulation Of Gear Cutting For Design Of Broach Cutting Toolstr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetBu tez çalışmasında; broşlama yöntemi ile dişli açma simülasyonlarını ANSYS ve LS-DYNA yazılımları (Sonlu Elemanlar Analizi ile) kullanılarak yapılmış, böylelikle broş kesici takımların tasarlanması ve imalatı hedeflenmiştir. Broşlama; parçaların iç ve dış yüzeylerinden talaş kaldırarak şekillendirmede kullanılan talaşlı imalatta ucuz, hızlı, ölçü hassasiyeti ve yüzey değerlerini sürekli aynı tutabilen seri üretim teknolojilerinden bir tanesidir. Broşlama işlemi; işin özelliğine göre dizayn edilerek yapılmış broş tığlarının, yatay veya dikey broş tezgâhlarında malzemenin içerisinden çekilmesi veya itilmesi ile gerçekleşir. Broşlamanın faydaları: Broşlama teknolojisi ile yapılan üretimlerin, diğer üretim tekniklerine göre üstünlükler aşağıdaki gibi sıralanabilir; • İşleme zamanı oldukça kısadır, • Yüksek yüzey kalitesi sağlar, • İkinci bir operasyona gerek kalmaz, • Ölçü standardı sağlar, • Karmaşık profillerin yapılabilmesini sağlar, • Kolay ve ucuz işçilik sağlar, • Diğer tekniklere göre yatırım maliyeti düşüktür, • Kalifiye eleman ihtiyacı gerektirmez. Broşlama teknolojisinin kullanım alanları ise; • Otomotiv endüstrisinde çok sayıda dişli ve parçanın imalatında, • Uçak ve uzay endüstrisindeki pek çok parçanın imalatında, • Silah sanayinde silah parçalarının üretiminde, • Elektrik motoru ve türbin parçaları imalatında, • Kremayer dişlilerden kilit imalatına kadar çok geniş bir alanda yaygın olarak kullanılmaktadır. Tezin ana hedefi; henüz ülkemizde üretilmeyen ve dünyada birkaç firmanın tekelinde bulunan özellikteki broşlama işlemini yapabilecek tezgâhın tasarlanması ve prototipinin üretilmesi için gerekli Ar-Ge faaliyetini sağlamaktır. Bu tezin çıktıları sayesinde otomotiv sanayinde üretilen traktör, yükleyici, ekskavatör gibi iş makinaları ile otomatik şanzımanlı otomobillerde kullanılmakta olan dâhili çember dişlilerin seri üretimleri ülkemizde yerli tezgâh ve tığları ile gerçekleşecektir. Ülkemizde üretimde kullanılmayan bir teknoloji ile daha verimli şekilde dişli üretim yapan bir sektör oluşturulacaktır. Bu üretim teknolojisi ile ülkemizin iç ve dış pazarlarda büyük ihtiyaç duyulan dişli üretiminde söz sahibi olması mümkün olacaktır.tr_TR
dc.contributor.departmentMakine Mühendisliğitr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster