dc.contributor.advisor | Uzun, Lokman | |
dc.contributor.author | Ağlamaz, Mustafa Deniz | |
dc.date.accessioned | 2024-10-14T13:02:24Z | |
dc.date.issued | 2024 | |
dc.date.submitted | 2024-07-29 | |
dc.identifier.citation | Aglamaz, M.D., Hyaluronik Asit Saflaştırması İçin Çekirdek - Kabuk Yapısına Sahip Silika Partiküllerin Geliştirilmesi, Hacettepe Üniversitesi, Biyomühendislik ABD, Doktora Tezi, 2024 | tr_TR |
dc.identifier.uri | https://hdl.handle.net/11655/35947 | |
dc.description.abstract | In this study, the aim is to develop amphiphilic polymer core-silica shell hybrid particles with high affinity for the purification and separation of Hyaluronic Acid (HA), which has significant economic value.
In line with this objective, hybrid core-shell silica particles were synthesized using the Stober method for the separation and purification of HA, which is widely used in the aesthetic, health, and cosmetic sectors. It was observed that the obtained particles are suitable for hydrophilic interaction liquid chromatography (HILIC), a chromatographic technique that has become popular in recent years. Additionally, particles with core-shell technology are increasingly gaining commercial ground among chromatographic packing materials due to their superior properties. To enhance the affinity of the synthesized particles against hyaluronic acid, the surface was modified with L-aspartic acid, chosen as a functional ligand. The surface area of the prepared 0,6 µm L-aspartic acid modified core-shell hybrid silica particles (mod-SiO2@P1) was determined to be 240 m²/g and the surface area of the prepared 5,3 µm L-aspartic acid modified core-shell hybrid silica particles (mod-SiO2@P2) was determined to be 440 m²/g. These particles were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Thermogravimetric Analysis (TGA), Dynamic Light Scattering (DLS) particle size analysis, and surface area measurements (BET). Adsorption and desorption of hyaluronic acid in aqueous solution and bacterial lysate were carried out using mod-SiO2@P1 and mod-SiO2@P2 hybrid core-shell particles. It was observed that the buffer system used affected the adsorption, with maximum hyaluronic acid adsorption of 25.85 mg/g for mod-SiO2@P1 and that for mod-SiO2@P2 is 65.25 mg/g occurring in the presence of phosphate buffer at pH 7. No significant decrease in adsorption capacity was observed for mod-SiO2@P1 and mod-SiO2@P2 hybrid core-shell particles after adsorption-desorption cycles. In addition to batch-wise set-up, continuous system studies were also conducted with mod-SiO2@P2 particles. The reusability of the particles was also examined. Eperimental data were confirmed by HPLC analysis. | tr_TR |
dc.description.abstract | In this study, the aim is to develop amphiphilic polymer core-silica shell hybrid particles with high affinity for the purification and separation of Hyaluronic Acid (HA), which has significant economic value.
In line with this objective, hybrid core-shell silica particles were synthesized using the Stober method for the separation and purification of HA, which is widely used in the aesthetic, health, and cosmetic sectors. It was observed that the obtained particles are suitable for hydrophilic interaction liquid chromatography (HILIC), a chromatographic technique that has become popular in recent years. Additionally, particles with core-shell technology are increasingly gaining commercial ground among chromatographic packing materials due to their superior properties. To enhance the affinity of the synthesized particles against hyaluronic acid, the surface was modified with L-aspartic acid, chosen as a functional ligand. The surface area of the prepared 0,6 µm L-aspartic acid modified core-shell hybrid silica particles (mod-SiO2@P1) was determined to be 240 m²/g and the surface area of the prepared 5,3 µm L-aspartic acid modified core-shell hybrid silica particles (mod-SiO2@P2) was determined to be 440 m²/g. These particles were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Thermogravimetric Analysis (TGA), Dynamic Light Scattering (DLS) particle size analysis, and surface area measurements (BET). Adsorption and desorption of hyaluronic acid in aqueous solution and bacterial lysate were carried out using mod-SiO2@P1 and mod-SiO2@P2 hybrid core-shell particles. It was observed that the buffer system used affected the adsorption, with maximum hyaluronic acid adsorption of 25.85 mg/g for mod-SiO2@P1 and that for mod-SiO2@P2 is 65.25 mg/g occurring in the presence of phosphate buffer at pH 7. No significant decrease in adsorption capacity was observed for mod-SiO2@P1 and mod-SiO2@P2 hybrid core-shell particles after adsorption-desorption cycles. In addition to batch-wise set-up, continuous system studies were also conducted with mod-SiO2@P2 particles. The reusability of the particles was also examined. Eperimental data were confirmed by HPLC analysis. | tr_TR |
dc.language.iso | tur | tr_TR |
dc.publisher | Fen Bilimleri Enstitüsü | tr_TR |
dc.rights | info:eu-repo/semantics/embargoedAccess | tr_TR |
dc.subject | L-aspartik asit, | tr_TR |
dc.subject | Çekirdek-kabuk partikül | |
dc.subject | Hyaluronik asit | |
dc.subject | Glukozaminglikan | |
dc.subject | Hidrofilik etkileşim | |
dc.subject.lcsh | Kimya | tr_TR |
dc.title | Hyaluronik Asit Saflaştırması İçin Çekirdek - Kabuk Yapısına Sahip Silika Partiküllerin Geliştirilmesi | tr_TR |
dc.title.alternative | Development of Core-Shell Silica Particles for Purification Of Hyaluronic Acid | tr_TR |
dc.type | info:eu-repo/semantics/doctoralThesis | tr_TR |
dc.description.ozet | Bu çalışmada, ekonomik değeri yüksek olan Hyaluronik Asit (HA)’in saflaştırılması ve ayırımı için amfifilik polimer çekirdek – silika kabuk (core-shell) özellikli afinitesi yüksek partikül geliştirilmesi amaçlanmaktadır.
Bu hedef doğrultusunda estetik, sağlık ve kozmetik sektörlerinde yaygın olarak kullanılan biyomalzemelerden HA’nın ayrılması ve saflaştırılması için Stöber yöntemi ile hibrit çekirdek-kabuk silika jel bazlı partiküller sentezlendi. Elde edilen partiküllerin son yıllarda gözde olan kromatografik teknik olan hidrofilik ayırım kromatografisi, HILIC, temellerine uygun olduğu gözlendi. Ayrıca üstün özellikleriyle birlikte çekirdek – kabuk teknolojisine sahip partiküller de kromatografi dolgu malzemeleri arasındaki ticari payı ve yerini gün geçtikçe arttırmaktadır. Sentezlenen partiküllerin hyaluronik aside karşı afinitesini arttırmak için fonksiyonel ligand olarak seçilen L-aspartik asit ile yüzey modifikasyonu gerçekleştirildi. Hazırlanan 0,6 µm L-aspartik asit modifiyeli çekirdek – kabuk hibrit silika partiküllerin (mod-SiO2@P1) yüzey alanı 240 m2/g ve 5,3 µm boyutunda olan L-aspartik asit modifiyeli çekirdek – kabuk hibrit silika partiküllerin (mod-SiO2@P2) yüzey alanı 440 m2/g’dır. Karakterizasyon yöntemlerinden olan Fourier dönüşümlü infrared spektroskopisi (FTIR), taramalı elektron mikroskopisi (SEM), geçirgenlik elektron mikroskopu (TEM), termogravimetrik analiz (TGA), ışık saçılım yöntemli (DLS) partikül boyut analizi ve yüzey alanı ölçümleri (BET) ile karakterize edildi. Sulu çözeltide ve bakteri lizatı ortamında hyaluronik asit adsorpsiyonu ve desorpsiyonu mod-SiO2@P1 ve mod-SiO2@P2 hibrit çekirdek – kabuk partiküller ile gerçekleştirildi. Kullanılan tampon sisteminin adsorpsiyonu etkilediği görüldü ve maksimum hyaluronik asit adsorpsiyonu mod-SiO2@P1 partikülleri için 25,85 mg/g ve mod-SiO2@P2 partikülleri için 65,25 mg/g olarak fosfat tamponu varlığında, pH 7 değerinde gerçekleştirildi. Adsorpsiyon-desorpsiyon döngüleri sonucunda mod-SiO2@P1 ve mod-SiO2@P2 hibrit çekirdek – kabuk partiküllerin adsorpsiyon kapasitesinde önemli bir azalma olmadığı gözlendi. mod-SiO2@P2 partikülleri ile kesikli sistem haricinde sürekli sistem çalışmaları da yapıldı. Partiküllerin tekrar kullanılabilirliği de ayrıca incelendi. HPLC analizleriyle deneysel verilerin doğrulamaları yapıldı. | tr_TR |
dc.contributor.department | Biyomühendislik | tr_TR |
dc.embargo.terms | 6 ay | tr_TR |
dc.embargo.lift | 2025-04-18T13:02:24Z | |
dc.funding | Yok | tr_TR |