Basit öğe kaydını göster

dc.contributor.advisorTemuçin, Çağrı Mesut
dc.contributor.authorPanpallı Ateş, Mehlika
dc.date.accessioned2024-07-19T08:25:50Z
dc.date.issued2024-06-29
dc.date.submitted2024-06-05
dc.identifier.citation1. Sommer M, Ciocca M, Chieffo R, Hammond P, Neef A, Paulus W, et al. TMS of primary motor cortex with a biphasic pulse activates two independent sets of excitable neurones. Brain Stimul. 2018;11(3):558-65. 2. Ziemann U. TMS induced plasticity in human cortex. Rev Neurosci. 2004;15(4):253-66. 3. Halawa I, Reichert K, Aberra AS, Sommer M, Peterchev AV, Paulus W. Effect of Pulse Duration and Direction on Plasticity Induced by 5 Hz Repetitive Transcranial Magnetic Stimulation in Correlation With Neuronal Depolarization. Front Neurosci. 2021;15:773792. 4. Yeh KL, Fong PY, Huang YZ. Intensity sensitive modulation effect of theta burst form of median nerve stimulation on the monosynaptic spinal reflex. Neural Plast. 2015;2015:704849. 5. Jimenez S, Mordillo-Mateos L, Dileone M, Campolo M, Carrasco-Lopez C, Moitinho-Ferreira F, et al. Effects of patterned peripheral nerve stimulation on soleus spinal motor neuron excitability. PLoS One. 2018;13(2):e0192471. 6. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1(8437):1106-7. 7. Ziemann U, Muellbacher W, Hallett M, Cohen LG. Modulation of practice-dependent plasticity in human motor cortex. Brain. 2001;124(Pt 6):1171-81. 8. Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;2(3):145-56. 9. Rossini PM, Rossi S. Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology. 2007;68(7):484-8. 10. Valls-Sole J, Pascual-Leone A, Wassermann EM, Hallett M. Human motor evoked responses to paired transcranial magnetic stimuli. Electroencephalogr Clin Neurophysiol. 1992;85(6):355-64. 11. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al. Corticocortical inhibition in human motor cortex. J Physiol. 1993;471:501-19. 12. Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W. The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res. 1996;109(1):127-35. 13. Ziemann U, Bruns D, Paulus W. Enhancement of human motor cortex inhibition by the dopamine receptor agonist pergolide: evidence from transcranial magnetic stimulation. Neurosci Lett. 1996;208(3):187-90. 14. Rothwell JC. Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods. 1997;74(2):113-22. 15. Ilic TV, Meintzschel F, Cleff U, Ruge D, Kessler KR, Ziemann U. Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. J Physiol. 2002;545(1):153-67. 16. Jalinous R. Technical and practical aspects of magnetic nerve stimulation. J Clin Neurophysiol. 1991;8(1):10-25. 17. Ziemann U, Rothwell JC, Ridding MC. Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol. 1996;496 ( Pt 3)(Pt 3):873-81. 18. Peurala SH, Muller-Dahlhaus JF, Arai N, Ziemann U. Interference of short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF). Clin Neurophysiol. 2008;119(10):2291-7. 19. Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, et al. Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. J Physiol. 1998;508 ( Pt 2)(Pt 2):625-33. 20. Tofts PS. The distribution of induced currents in magnetic stimulation of the nervous system. Phys Med Biol. 1990;35(8):1119-28. 21. Burke D, Bartley K, Woodforth IJ, Yakoubi A, Stephen JP. The effects of a volatile anaesthetic on the excitability of human corticospinal axons. Brain. 2000;123 ( Pt 5):992-1000. 22. Klomjai W, Katz R, Lackmy-Vallee A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med. 2015;58(4):208-13. 23. Oliveri M, Rossini PM, Filippi MM, Traversa R, Cicinelli P, Palmieri MG, et al. Time-dependent activation of parieto-frontal networks for directing attention to tactile space. A study with paired transcranial magnetic stimulation pulses in right-brain-damaged patients with extinction. Brain. 2000;123 ( Pt 9):1939-47. 24. Di Lazzaro V, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, et al. Direct recordings of descending volleys after transcranial magnetic and electric motor cortex stimulation in conscious humans. Electroencephalogr Clin Neurophysiol Suppl. 1999;51:120-6. 25. Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol. 2012;123(5):858-82. 26. Patton HD, Amassian VE. Single and multiple-unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol. 1954;17(4):345-63. 27. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P, et al. The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol. 2004;115(2):255-66. 28. Nakamura H, Kitagawa H, Kawaguchi Y, Tsuji H, Takano H, Nakatoh S. Intracortical facilitation and inhibition after paired magnetic stimulation in humans under anesthesia. Neurosci Lett. 1995;199(2):155-7. 29. McCormick DA. GABA as an inhibitory neurotransmitter in human cerebral cortex. J Neurophysiol. 1989;62(5):1018-27. 30. Chu J, Gunraj C, Chen R. Possible differences between the time courses of presynaptic and postsynaptic GABAB mediated inhibition in the human motor cortex. Exp Brain Res. 2008;184(4):571-7. 31. Day BL, Dressler D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, et al. Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol. 1989;412:449-73. 32. Cash RF, Benwell NM, Murray K, Mastaglia FL, Thickbroom GW. Neuromodulation by paired-pulse TMS at an I-wave interval facilitates multiple I-waves. Exp Brain Res. 2009;193(1):1-7. 33. Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Pilato F, Zito G, et al. Ketamine increases human motor cortex excitability to transcranial magnetic stimulation. J Physiol. 2003;547(Pt 2):485-96. 34. Di Lazzaro V, Pilato F, Oliviero A, Dileone M, Saturno E, Mazzone P, et al. Origin of facilitation of motor-evoked potentials after paired magnetic stimulation: direct recording of epidural activity in conscious humans. J Neurophysiol. 2006;96(4):1765-71. 35. Hanajima R, Terao Y, Hamada M, Okabe S, Nakatani-Enomoto S, Furubayashi T, et al. Forty-hertz triple-pulse stimulation induces motor cortical facilitation in humans. Brain Res. 2009;1296:15-23. 36. Ziemann U, Chen R, Cohen LG, Hallett M. Dextromethorphan decreases the excitability of the human motor cortex. Neurology. 1998;51(5):1320-4. 37. Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMSCG. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008-39. 38. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126(6):1071-107. 39. Derosiere G, Vassiliadis P, Duque J. Advanced TMS approaches to probe corticospinal excitability during action preparation. Neuroimage. 2020;213:116746. 40. Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980;285(5762):227. 41. Merton PA. The silent period in a muscle of the human hand. J Physiol. 1951;114(1-2):183-98. 42. Davey NJ, Romaiguere P, Maskill DW, Ellaway PH. Suppression of voluntary motor activity revealed using transcranial magnetic stimulation of the motor cortex in man. J Physiol. 1994;477(Pt 2):223-35. 43. Roick H, von Giesen HJ, Benecke R. On the origin of the postexcitatory inhibition seen after transcranial magnetic brain stimulation in awake human subjects. Exp Brain Res. 1993;94(3):489-98. 44. Haug BA, Schonle PW, Knobloch C, Kohne M. Silent period measurement revives as a valuable diagnostic tool with transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol. 1992;85(2):158-60. 45. Pierrot-Deseilligny E, Bussel B, Held JP, Katz R. Excitability of human motoneurones after discharge in a conditioning reflex. Electroencephalogr Clin Neurophysiol. 1976;40(3):279-87. 46. Person RS, Kozhina GV. Study of orthodromic and antidromic effects of nerve stimulation on single motoneurones of human hand muscles. Electromyogr Clin Neurophysiol. 1978;18(6):437-56. 47. Fuhr P, Agostino R, Hallett M. Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol. 1991;81(4):257-62. 48. Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD. Stimulation of the human motor cortex through the scalp. Exp Physiol. 1991;76(2):159-200. 49. Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J. Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol. 1999;517 ( Pt 2)(Pt 2):591-7. 50. Thorstensen JR, Taylor JL, Tucker MG, Kavanagh JJ. Enhanced serotonin availability amplifies fatigue perception and modulates the TMS-induced silent period during sustained low-intensity elbow flexions. J Physiol. 2020;598(13):2685-701. 51. Zeugin D, Ionta S. Anatomo-Functional Origins of the Cortical Silent Period: Spotlight on the Basal Ganglia. Brain Sci. 2021;11(6). 52. van Kuijk AA, Pasman JW, Geurts AC, Hendricks HT. How salient is the silent period? The role of the silent period in the prognosis of upper extremity motor recovery after severe stroke. J Clin Neurophysiol. 2005;22(1):10-24. 53. Macdonell RA, King MA, Newton MR, Curatolo JM, Reutens DC, Berkovic SF. Prolonged cortical silent period after transcranial magnetic stimulation in generalized epilepsy. Neurology. 2001;57(4):706-8. 54. Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero A, Profice P, Insola A, et al. Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol. 2000;523 Pt 2(Pt 2):503-13. 55. Turco CV, El-Sayes J, Savoie MJ, Fassett HJ, Locke MB, Nelson AJ. Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors. Brain Stimul. 2018;11(1):59-74. 56. Fischer M, Orth M. Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMS. Brain Stimul. 2011;4(4):202-9. 57. Bailey AZ, Asmussen MJ, Nelson AJ. Short-latency afferent inhibition determined by the sensory afferent volley. J Neurophysiol. 2016;116(2):637-44. 58. Classen J, Steinfelder B, Liepert J, Stefan K, Celnik P, Cohen LG, et al. Cutaneomotor integration in humans is somatotopically organized at various levels of the nervous system and is task dependent. Exp Brain Res. 2000;130(1):48-59. 59. Udupa K, Ni Z, Gunraj C, Chen R. Interactions between short latency afferent inhibition and long interval intracortical inhibition. Exp Brain Res. 2009;199(2):177-83. 60. Alle H, Heidegger T, Krivanekova L, Ziemann U. Interactions between short-interval intracortical inhibition and short-latency afferent inhibition in human motor cortex. J Physiol. 2009;587(Pt 21):5163-76. 61. Asmussen MJ, Jacobs MF, Lee KG, Zapallow CM, Nelson AJ. Short-latency afferent inhibition modulation during finger movement. PLoS One. 2013;8(4):e60496. 62. Nikolova M, Pondev N, Christova L, Wolf W, Kossev AR. Motor cortex excitability changes preceding voluntary muscle activity in simple reaction time task. Eur J Appl Physiol. 2006;98(2):212-9. 63. Hess CW, Mills KR, Murray NM. Magnetic stimulation of the human brain: facilitation of motor responses by voluntary contraction of ipsilateral and contralateral muscles with additional observations on an amputee. Neurosci Lett. 1986;71(2):235-40. 64. Rushton DN, Rothwell JC, Craggs MD. Gating of somatosensory evoked potentials during different kinds of movement in man. Brain. 1981;104(3):465-91. 65. Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Di Giovanni S, Zito G, et al. Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res. 2000;135(4):455-61. 66. Di Lazzaro V, Pilato F, Dileone M, Profice P, Ranieri F, Ricci V, et al. Segregating two inhibitory circuits in human motor cortex at the level of GABAA receptor subtypes: a TMS study. Clin Neurophysiol. 2007;118(10):2207-14. 67. Giorgetti M, Bacciottini L, Giovannini MG, Colivicchi MA, Goldfarb J, Blandina P. Local GABAergic modulation of acetylcholine release from the cortex of freely moving rats. Eur J Neurosci. 2000;12(6):1941-8. 68. Kuo HI, Paulus W, Batsikadze G, Jamil A, Kuo MF, Nitsche MA. Acute and Chronic Noradrenergic Effects on Cortical Excitability in Healthy Humans. Int J Neuropsychopharmacol. 2017;20(8):634-43. 69. Nardone R, Bergmann J, Brigo F, Christova M, Kunz A, Seidl M, et al. Functional evaluation of central cholinergic circuits in patients with Parkinson's disease and REM sleep behavior disorder: a TMS study. J Neural Transm (Vienna). 2013;120(3):413-22. 70. Di Lazzaro V, Ziemann U, Lemon RN. State of the art: Physiology of transcranial motor cortex stimulation. Brain Stimul. 2008;1(4):345-62. 71. Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, et al. Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res. 1998;119(2):265-8. 72. Hanajima R, Furubayashi T, Iwata NK, Shiio Y, Okabe S, Kanazawa I, et al. Further evidence to support different mechanisms underlying intracortical inhibition of the motor cortex. Exp Brain Res. 2003;151(4):427-34. 73. Florian J, Muller-Dahlhaus M, Liu Y, Ziemann U. Inhibitory circuits and the nature of their interactions in the human motor cortex a pharmacological TMS study. J Physiol. 2008;586(2):495-514. 74. Fisher RJ, Nakamura Y, Bestmann S, Rothwell JC, Bostock H. Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp Brain Res. 2002;143(2):240-8. 75. Chen R, Tam A, Butefisch C, Corwell B, Ziemann U, Rothwell JC, et al. Intracortical inhibition and facilitation in different representations of the human motor cortex. J Neurophysiol. 1998;80(6):2870-81. 76. Chen R. Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res. 2004;154(1):1-10. 77. Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, et al. Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol. 2000;111(5):794-9. 78. Schwenkreis P, Witscher K, Janssen F, Addo A, Dertwinkel R, Zenz M, et al. Influence of the N-methyl-D-aspartate antagonist memantine on human motor cortex excitability. Neurosci Lett. 1999;270(3):137-40. 79. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201-6. 80. Conte A, Rocchi L, Nardella A, Dispenza S, Scontrini A, Khan N, et al. Theta-burst stimulation-induced plasticity over primary somatosensory cortex changes somatosensory temporal discrimination in healthy humans. PLoS One. 2012;7(3):e32979. 81. Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol. 2008;119(3):504-32. 82. Stagg CJ, Bestmann S, Constantinescu AO, Moreno LM, Allman C, Mekle R, et al. Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. J Physiol. 2011;589(Pt 23):5845-55. 83. Chuang WL, Huang YZ, Lu CS, Chen RS. Reduced cortical plasticity and GABAergic modulation in essential tremor. Mov Disord. 2014;29(4):501-7. 84. Hupfeld KE, Swanson CW, Fling BW, Seidler RD. TMS-induced silent periods: A review of methods and call for consistency. J Neurosci Methods. 2020;346:108950. 85. Young-Bernier M, Kamil Y, Tremblay F, Davidson PS. Associations between a neurophysiological marker of central cholinergic activity and cognitive functions in young and older adults. Behav Brain Funct. 2012;8:17. 86. Tamburin S, Manganotti P, Zanette G, Fiaschi A. Cutaneomotor integration in human hand motor areas: somatotopic effect and interaction of afferents. Exp Brain Res. 2001;141(2):232-41. 87. Di Lazzaro V, Profice P, Ranieri F, Capone F, Dileone M, Oliviero A, et al. I-wave origin and modulation. Brain Stimul. 2012;5(4):512-25. 88. Chen R, Corwell B, Hallett M. Modulation of motor cortex excitability by median nerve and digit stimulation. Exp Brain Res. 1999;129(1):77-86. 89. Tsang P, Jacobs MF, Lee KGH, Asmussen MJ, Zapallow CM, Nelson AJ. Continuous theta-burst stimulation over primary somatosensory cortex modulates short-latency afferent inhibition. Clin Neurophysiol. 2014;125(11):2253-9. 90. Di Lazzaro V, Dileone M, Pilato F, Capone F, Musumeci G, Ranieri F, et al. Modulation of motor cortex neuronal networks by rTMS: comparison of local and remote effects of six different protocols of stimulation. J Neurophysiol. 2011;105(5):2150-6. 91. Fong PY, Spampinato D, Rocchi L, Hannah R, Teng Y, Di Santo A, et al. Two forms of short-interval intracortical inhibition in human motor cortex. Brain Stimul. 2021;14(5):1340-52. 92. Hanajima R, Ugawa Y, Terao Y, Sakai K, Furubayashi T, Machii K, et al. Paired-pulse magnetic stimulation of the human motor cortex: differences among I waves. J Physiol. 1998;509 ( Pt 2)(Pt 2):607-18. 93. Batzianouli ET, Caranzano L, Nguepnjo Nguissi NA, Miaz B, Herrmann FR, Benninger DH. The paired-pulse TMS paradigm of short intracortical inhibition is mediated by a reduction of repetitive motor neuron discharges. J Neurophysiol. 2024;131(3):541-7.tr_TR
dc.identifier.uriReferans No: 10512062
dc.identifier.urihttps://hdl.handle.net/11655/35321
dc.description.abstractPanpallı Ateş, M., Effect of Peripheral Nerve Continuous Theta Burst Stimulation (“Peripheral-cTBS”) on Cortical Excitability, Hacettepe University Institute of Health Sciences -Advanced Neurological and Psychiatric Sciences Program Master's Degree Thesis, Ankara, 2024. In our study, it is similar to cortical cTBS stimulation. In this way, it was aimed to examine cortical excitability changes with electrical stimulation of a peripheral nerve (peripheral-cTBS) in theta burst pattern. It was hypothesized that effects similar to cortical cTBS application could be created on cortical excitability through thalamocortical projections of somatosensory peripheral electrical inputs. To evaluate the hypothesis, somatosensory evoked potentials and cortical excitability studies were performed before peripheral-cTBS application; cortical silent period (CoSS), short latency afferent inhibition (SAI), short interval intracortical inhibition (SICI) and intracortical facilitation (ICF) measurements were obtained after peripheral-cTBS application. were compared with measurements of the same parameters. In accordance with the study hypothesis in which the modulatory effect of peripheral-cTBS on cortical excitability was evaluated, an inhibitory effect emerged in the circuits forming the SAI, and a decrease in inhibition (dis-inhibition) and a decrease in the facilitatory effect (dys-facilitation) were found as a result of inhibition in the circuits forming the ICF. On the other hand, the lack of change in SICI suggested that SAI and SICI were formed through different pathways, and that peripheral-cTBS contributed to the formation of SAI but did not affect SICI. With these results, additional new information has been added to the very few studies in the literature using peripheral-cTBS by examining previously unexamined pathways. Our results showed that peripheral-cTBS may have a modulatory effect on the motor cortex like cortical cTBS and can be used for cortical modulation.tr_TR
dc.language.isoturtr_TR
dc.publisherNörolojik Bilimler ve Psikiyatri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectContinuous theta Burst Stimülasyonutr_TR
dc.subjectICFtr_TR
dc.subjectKortikal Uyarılabilirliktr_TR
dc.subjectrepetetif transkraniyal manyetik stimülasyontr_TR
dc.subjectSAItr_TR
dc.subject.lcshTıp uygulamasıtr_TR
dc.titlePeriferik Sinir Continous Teta Burst Stimülasyonunun (Periferik-cTBS) Kortikal Uyarılabilirlik Üzerine Etkisitr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetPanpallı Ateş, M., Periferik Sinir Continous Teta Burst Stimülasyonunun (“Periferik-cTBS”) Kortikal Uyarılabilirlik Üzerine Etkisi, Hacettepe Üniversitesi Sağlık Bilimleri Enstitüsü-İleri Nörolojik ve Psikiyatrik Bilimler Programı Yüksek Lisans Tezi, Ankara, 2024. Çalışmamızda, kortikal cTBS uyarımına benzer şekilde, teta burst paterninde periferik bir sinirin elektriksel uyarımı (periferik-cTBS) ile kortikal uyarılabilirlik değişikliklerinin incelenmesi hedeflenmiştir. Somatosensori periferik elektriksel girdilerin talamokortikal projeksiyonları ile kortikal uyarılabilirlikte, kortikal cTBS uygulamasına benzer etkiler oluşturulabileceği hipotezinden yola çıkılmıştır. Hipotezin değerlendirilmesi için periferik-cTBS uygulaması öncesi gerçekleştirilen somatosensori uyarılmış potansiyeller ve kortikal uyarılabilirlik çalışmaları; kortikal sessiz süre (KoSS), kısa latanslı afferent inhibisyon (short latency afferent inhibition: SAI), kısa aralıklı intrakortikal inhibisyon (short interval intracortical inhibition: SICI) ve intrakortikal fasilitasyon (intracortical facilitation: ICF) ölçümleri, periferik-cTBS uygulaması sonrası elde edilen aynı parametrelere ait ölçümler ile karşılaştırılmıştır. Periferik-cTBS’nin kortikal uyarılabilirlikteki modülatör etkisinin değerlendirildiği çalışma hipotezi ile uygun olarak SAI’yi oluşturan devrelerde inhibitör etki ortaya çıkmış olup inhibisyonda azalma (dis-inhibisyon) ve ICF’yi oluşturan devrelerde inhibisyon sonucu fasilitatuar etkide azalma (dis-fasilitasyon) bulunmuştur. Diğer yandan SICI’da değişiklik olmaması, SAI ile SICI’nın farklı yolaklar aracılığı ile oluştuğunu, periferik-cTBS’nin SAI oluşumuna katkısı olurken SICI’yı etkilemediğini düşündürmüştür. Bu sonuçlar ile literatürde periferik-cTBS’in kullanıldığı çok az sayıdaki çalışmaya, daha önce incelenmemiş yolakları inceleyerek ek yeni bilgiler eklenmiştir. Sonuçlarımız, periferik-cTBS’nin motor korteks üzerinde kortikal cTBS gibi modulatör etkisinin olabileceğini ve kortikal modülasyon için kullanılabileceğini göstermiştir.tr_TR
dc.contributor.departmentNörolojik ve Psikiyatrik Temel Bilimlertr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2024-07-19T08:25:50Z
dc.fundingYoktr_TR
dc.subtypemedicineThesistr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster