Basit öğe kaydını göster

dc.contributor.advisorGörtan, Mehmet Okan
dc.contributor.authorOdabaşı Atak, Büşra
dc.date.accessioned2023-06-06T05:51:05Z
dc.date.issued2023-01-24
dc.date.submitted2023-01-09
dc.identifier.citation[1] H. M. Mallaradhya, V. Kumar M, R. Ranganatha, S. Darshan, and Lochan, “Resistance Spot Welding, A Review,” Int. J. Mech. Prod. Eng. Res. Dev., vol. 8, pp. 403–418, Apr. 2018, doi: 10.24247/ijmperdapr201846. [2] P. Podržaj, I. Polajnar, J. Diaci, and Z. Kariž, “Overview of resistance spot welding control,” https://doi.org/10.1179/174329308X283893, vol. 13, no. 3, pp. 215–224, May 2013, doi: 10.1179/174329308X283893. [3] H. Zhang and J. Senkara, Resistance welding: Fundamentals and applications, second edition. 2011. [4] S. Shafee, B. B. Naik, and K. Sammaiah, “Resistance Spot Weld Quality Characteristics Improvement By Taguchi Method,” Mater. Today Proc., vol. 2, no. 4–5, pp. 2595–2604, 2015, doi: 10.1016/J.MATPR.2015.07.215. [5] L. H. Shah and M. Ishak, “Review of Research Progress on Aluminum–Steel Dissimilar Welding,” http://dx.doi.org/10.1080/10426914.2014.880461, vol. 29, no. 8, pp. 928–933, Aug. 2014, doi: 10.1080/10426914.2014.880461. [6] M. P. Mubiayi and E. Akinlabi, “Friction Stir Welding of Dissimilar Materials between Aluminium Alloys and Copper - An Overview,” undefined, 2013. [7] K. Martinsen, S. J. Hu, and B. E. Carlson, “Joining of dissimilar materials,” CIRP Ann., vol. 64, no. 2, pp. 679–699, Jan. 2015, doi: 10.1016/J.CIRP.2015.05.006. [8] M. Pouranvari, “Critical assessment 27: dissimilar resistance spot welding of aluminium/steel: challenges and opportunities,” https://doi.org/10.1080/02670836.2017.1334310, vol. 33, no. 15, pp. 1705–1712, Oct. 2017, doi: 10.1080/02670836.2017.1334310. [9] K. Miyamoto, S. Nakagawa, C. Sugi, H. Sakurai, and A. Hirose, “Dissimilar joining of aluminum alloy and steel by resistance spot welding,” SAE Tech. Pap., pp. 58–67, 2009, doi: 10.4271/2009-01-0034. [10] N. Chen, H. P. Wang, B. E. Carlson, D. R. Sigler, and M. Wang, “Fracture mechanisms of Al/steel resistance spot welds in lap shear test,” J. Mater. Process. Technol., vol. 243, pp. 347–354, May 2017, doi: 10.1016/J.JMATPROTEC.2016.12.015. [11] R. Qiu, C. Iwamoto, and S. Satonaka, “Interfacial microstructure and strength of steel/aluminum alloy joints welded by resistance spot welding with cover plate,” J. Mater. Process. Technol., vol. 209, no. 8, pp. 4186–4193, Apr. 2009, doi: 10.1016/J.JMATPROTEC.2008.11.003. [12] J. Chen, X. Yuan, Z. Hu, C. Sun, Y. Zhang, and Y. Zhang, “Microstructure and mechanical properties of resistance-spot-welded joints for A5052 aluminum alloy and DP 600 steel,” Mater. Charact., vol. 120, pp. 45–52, Oct. 2016, doi: 10.1016/J.MATCHAR.2016.08.015. [13] Y. C.-S. and technology of welding and joining and undefined 2003, “Failure mode of spot welds: interfacial versus pullout,” me.sc.edu, Accessed: Oct. 29, 2022. [Online]. Available: http://www.me.sc.edu/fs/pdf/stwj paper published.pdf. [14] Y. Lu, E. Mayton, H. Song, M. Kimchi, and W. Zhang, “Dissimilar metal joining of aluminum to steel by ultrasonic plus resistance spot welding - Microstructure and mechanical properties,” Mater. Des., vol. 165, p. 107585, Mar. 2019, doi: 10.1016/J.MATDES.2019.107585. [15] Y.-L. Lee, M. E. Barkey, and H.-T. Kang, “Metal fatigue analysis handbook : practical problem-solving techniques for computer-aided engineering,” 2011. [16] H. M. Rao, J. Kang, L. Shi, D. R. Sigler, and B. E. Carlson, “Effect of specimen configuration on fatigue properties of dissimilar aluminum to steel resistance spot welds,” undefined, vol. 116, pp. 13–21, Nov. 2018, doi: 10.1016/J.IJFATIGUE.2018.06.009. [17] J. Kang, Y. Chen, D. Sigler, B. Carlson, and D. S. Wilkinson, “Fatigue Behavior of Dissimilar Aluminum Alloy Spot Welds,” Procedia Eng., vol. 114, pp. 149–156, 2015, doi: 10.1016/J.PROENG.2015.08.053.tr_TR
dc.identifier.urihttps://hdl.handle.net/11655/33362
dc.description.abstractThis thesis aims to examine the joining of steel sheets with a yield strength of up to 1500MPa and aluminum materials by using resistance spot welding (RSW). Effect of electrode geometry and its combinations on the quality of the joint is investigated. Materials used are steel MS1500 and aluminum EN AW-6061-T6. Samples were produced, and iterations were observed on these samples to achieve the optimum combination in terms of mechanical strength by changing parameters such as current, time, and electrode type. The study was carried out on a scale between 11-14kA as current. The force was kept constant in all samples by taking 3kN. Welding times of 10 and 20 cycles were tested. Microstructure analysis, macrostructure analysis, and tensile-shear testing methods were applied to observe the results and achieve the goal of maximizing mechanical strength.. The macrostructure analysis examined the nugget diameter, melted zone geometry, joint geometry, and fracture type. Failure types were determined due to the tensile-shear test. Vickers hardness test was applied to specify the hardness of the joint.tr_TR
dc.description.abstractThis thesis aims to examine the joining of steel sheets with a yield strength of up to 1500MPa and aluminum materials by using resistance spot welding (RSW). Effect of electrode geometry and its combinations on the quality of the joint is investigated. Materials used are steel MS1500 and aluminum EN AW-6061-T6. Samples were produced, and iterations were observed on these samples to achieve the optimum combination in terms of mechanical strength by changing parameters such as current, time, and electrode type. The study was carried out on a scale between 11-14kA as current. The force was kept constant in all samples by taking 3kN. Welding times of 10 and 20 cycles were tested. Microstructure analysis, macrostructure analysis, and tensile-shear testing methods were applied to observe the results and achieve the goal of maximizing mechanical strength.. The macrostructure analysis examined the nugget diameter, melted zone geometry, joint geometry, and fracture type. Failure types were determined due to the tensile-shear test. Vickers hardness test was applied to specify the hardness of the joint.tr_TR
dc.language.isoentr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectResistance Spot Welding
dc.subjectRSW
dc.subjectSteel
dc.subjectAluminum
dc.subjectMS1500
dc.subject6061
dc.titleResıstance Spot Weldıng Of Ultra Hıgh Strength Steel Sheets Wıth Alumınum Materıalstr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetBu tez, çekme dayanımı 1500MPa ve üzerinde olan çelik sacların ve alüminyum malzemelerle direnç nokta kaynağı kullanılarak birleştirilmesini incelemeyi amaçlamaktadır. Elektrod geometrisi kombinasyonlarının bağlantıların kalitesine etkisinin incelenmesi hedeflenmiştir. Kullanılan malzemeler çelik MS1500 ve alüminyum EN AW-6061-T6'dır. Optimum kombinasyonun elde edilmesi için numuneler üretilmiş ve bu numuneler üzerinde akım, zaman, elektrot gibi parametreler değiştirilerek mekanik dayanım açısından iterasyonlar gözlemlenmiştir. 11-14kA akım değerleri arasında bir ölçekte çalışma yapılmıştır. Kuvvet 3kN alınarak tüm numunelerde sabit tutulmuştur. 10 ve 20 çevrim kaynak süreleri denenmiştir.. Uygulanan parametre analizinin etkilerini gözlemlemek ve mekanik mukavemeti en üst düzeye çıkarma hedefine ulaşmak için mikro yapı analizi, makro yapı analizi, çekme-makaslama testi yöntemleri uygulanmıştır. Mikro yapı analizinde numuneler arasındaki farklılıklar gözlemlenmiştir. Çekirdek çapı, birleşim yeri, ısı tesiri altındaki bölgenin geometrisi ve kırılma tipi makro yapı analizlerinde incelenmiştir. Kırılma tipleri çekme testinde belirlenmiştir. Birleşim yerinin sertliğinin belirlenmesi için Vickers sertlik testi uygulanmıştır.tr_TR
dc.contributor.departmentMakine Mühendisliğitr_TR
dc.embargo.terms6 aytr_TR
dc.embargo.lift2023-12-09T05:51:05Z
dc.fundingYoktr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster