Basit öğe kaydını göster

dc.contributor.advisorKutluay, Emir
dc.contributor.authorAvşar, Serdar
dc.date.accessioned2023-06-05T13:27:19Z
dc.date.issued2023-02-01
dc.date.submitted2023-01-17
dc.identifier.citation[1] BBC, "BBC," BBC, 14 January 2018. [Online]. Available: https://www.bbc.com/news/world-europe-42680238. [Accessed 12 10 2022]. [2] Onderzoeksraad, "Onderzoeksraad," Onderzoeksraad, [Online]. Available: https://www.onderzoeksraad.nl/en/page/4875/runway-excursion-maastrichtaachen- airport-11-november-2017. [Accessed 12 10 2022]. [3] IATA, "Runway Safety Accident Analysis Report 2010-2014," IATA, Montreal- Geneva, 2015. [4] Stratejik Düşünce Enstitüsü, "sde.org.tr," 11 January 2019. [Online]. Available: https://www.sde.org.tr/savunma-guvenlik/anka-sin-ilk-siparisinde-teslimatlartamamlandi- haberi-9091. [Accessed 12 10 2022]. [5] TAI, "www.tai.com.tr," [Online]. Available: https://www.tusas.com/urunler/iha/yuksek-faydali-yuk-kapasitesi/aksungur. [Accessed 12 10 2022]. [6] TRT, "Turkish Radio and Television Association," 26 March 2022. [Online]. Available: https://www.trthaber.com/haber/bilim-teknoloji/tusas-malezyadahurjet- ve-ankayi-sergileyecek-667148.html. [Accessed 12 10 2022]. [7] S. Gudeta and A. Karimoddini, "Design of a Smooth Landing Trajectory Tracking System for a Fixed-wing Aircraft," in American Control Conference, Philadelphia, 2019. [8] E. A. Morelli, "GLOBAL NONLINEAR PARAMETRIC MODELING WITH APPLICATION TO F-16 AERODYNAMICS," NASA, Hampton, VA, 1997. [9] A. F. Gabernet, Controllers for Systems with Bounded Actuators: Modeling and control of an F-16 aircraft, Irvine CA: UCA, 2007. [10] Y. Huo, "Model of F-16 Fighter Aircraft -Equation of Motions-," Los Angeles CA. [11] H. Georgieva and V. Serbezov, "Mathematical Model of Aircraft Ground Dynamics," in International Conference on Military Technologies, Brno, 2017. [12] Q. Yin, H. Nie and X. Wei, "Dynamics and Directional Stability of High-Speed Unmanned Aerial Vehicle Ground Taxiing Process," Journal of Aircraft, vol. 57, no. 4, 2020. [13] L. Bo, J. Zongxia and W. Shaoping, "Research on Modeling and Simulation of Aircraft – Taxiing Rectification," in 2006 IEEE Conference on Robotics, Automation and Mechatronics, Bangkok, 2006. [14] E. Coetzee, B. Krauskopf and M. Lowenberg, "Nonlinear Aircraft Ground Dynamics," in International Conference on Nonlinear Problems in Aviation and Aerospace, 2006. [15] S. Pines and R. Hueschen, "Guidance and navigation for automatic landing, rollout, and turnoff using MLS and magnetic cable sensors," in Guidance and Control Conference, Palo Alto CA, 1978. [16] R. F. Smiley and W. B. Horne, "Mechanical Properties Of Pneumatic Tires With Special Reference To Modern Aircraft Tires," NACA, Langley Field VA, 1958. [17] A. De Marco, E. L. Duke and J. S. Berndt, "A General Solution to the Aircraft Trim Problem," in AIAA Modeling and Simulation Technologies Conference and Exhibit, Hilton Head SC, 2007. [18] J. Luo, "MULTI-AXIS TRIM PROCESSING". United States Patent US 2008O147251A1, 19 June 2008. [19] A. A. Pashilkar, "Algorithms for Aircraft Trim Analysis on Ground," in AIAA Flight Simulation Technologies Conference, Sand Diego CA, 1996. [20] M. Millidere, U. Karaman, S. Uslu, C. Kasnakoğlu and T. Çimen, "Newton- Raphson Methods in Aircraft Trim: A Comparative Study," in AIAA Aviation Forum, Virtual Event, 2020. [21] S. Ismail, A. A. Pashilkar, R. Ayyagari and S. N., "Improved autolanding controller for aircraft encountering unknown actuator failures," in 2013 IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), Singapore, 2013. [22] C.-M. Lin and E.-A. Boldbataar, "Autolanding Control Using Recurrent Wavelet Elman Neural Network," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 45, no. 9, pp. 1281-1291, 2015. [23] S. Ismail, A. A. Pashilkar and R. Ayyagari, "Phase compensation and antiwindup design for neural-aided sliding mode fault-tolerant autoland controller," in 2015 International Conference on Cognitive Computing and Information Processing(CCIP), Noida, 2015. [24] H. Xiong, J.-q. Yi, G.-l. Fan, F.-s. Jing and R.-y. Yuan, "Autolanding of unmanned aerial vehicles based on Active Disturbance Rejection Control," in 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, 2009. [25] T. Wagner and J. Valasek, "Digital Autoland Control Laws Using Quantitative Feedback Theory and Direct Digital Design," JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS, vol. 30, no. 5, pp. 1399-1413, 2007. [26] D. V. Rao and T. H. Go, "Automatic landing system design using sliding mode control," Aerospace Science and Technology, vol. 32, pp. 180-187, 2014. [27] K. Lee, S. E. Li and D. Kum, "Synthesis of Robust Lane Keeping Systems: Impact of Controller and Design Parameters on System Performance," IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, vol. 20, no. 8, pp. 3129-3141, 2018. [28] M. Yamamoto, Y. Kagawa and A. Okuno, "Robust Control for Automated Lane Keeping against Lateral Disturbance," in International Conference on Intelligent Transportation Systems, Tokyo, 1999. [29] N. C. Basjaruddin, F. Adinugraha, T. Ramadhan, D. Saefudin and E. Rakhman, "Lane Keeping Assist Based on Fuzzy Logic using Camera Sensor," in 2019 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), Batu, 2019. [30] K. D. Young, V. I. Utkin and Ü. Özgüner, "A Control Engineer’s Guide to Sliding Mode Control," IEEE Transactions on Control Systems Technology, vol. 7, no. 3, pp. 328-342, 1999. [31] K.-K. Young, P. V. Kokotovich and V. I. Utkin, "A singular perturbation analysis of high-gain feedback systems," IEEE Transactions on Automatic Control, vol. 22, no. 6, pp. 931-938, 1977. [32] J. J. Slotine and S. S. Sastry, "Tracking control of non-linear systems using sliding surfaces with application to robot manipulators," in 1983 American Control Conference, San Francisco CA, 1983. [33] J. A. Burton and A. S. I. Zinober, "Continuous approximation of variable structure control," International Journal of Systems Science, vol. 17, no. 6, pp. 875-885, 1986. [34] A. G. Bondarev, S. A. Bondarev, N. E. Kostyleva and V. I. Utkin, "Sliding modes in systems with asymptotic state observers," Automation and Remote Control, vol. 46, pp. 679-684, 1985. [35] H. G. Kwatny and K.-K. D. Young, "The variable structure servomechanism," Systems and Control Letters, vol. 1, no. 3, pp. 184-191, 1981. [36] K. D. Young and S. V. Drakunov, "Discontinuous Frequency Shaping Compensation for Uncertain Dynamic Systems," IFAC Proceedings Volumes, vol. 26, no. 2, pp. 207-210, 1993. [37] İ. Haskara, C. Hatipoğlu and Ü. Özgüner, "Sliding Mode Compensation, Estimation and Optimization Methods in Automotive Control," in Variable Structure Systems: Towards the 21st Century, Springer, 2002, pp. 155-174. [38] B. Kürkçü, C. Kasnakoğlu and M. Ö. Efe, "Disturbance/Uncertainty Estimator Based Integral Sliding-Mode Control," IEEE Transactions on Automatic Control, vol. 63, no. 11, pp. 3940-3947, 2018. [39] P. B. Sujit, S. Saripalli and J. Sousa, "An Evaluation of UAV Path Following Algorithms," in 2013 European Control Conference (ECC), Zurich, 2013. [40] S. Park, J. Deyst and J. P. How, "Performance and Lyapunov Stability of a Nonlinear Path-Following Guidance Method," Journal of Guidance, Control, and Dynamics, vol. 30, no. 6, pp. 1718-1728, 2007. [41] D. R. Nelson, D. B. Barber, T. W. McLain and R. W. Beard, "Vector Field Path Following for Miniature Air Vehicles," IEEE Transactions on Robotics, vol. 23, no. 3, pp. 519-529, 2007. [42] A. Ratnoo, P. B. Sujit and M. Kothari, "Adaptive Optimal Path Following for High Wind Flights," in IFAC World Congress, Milano, 2011. [43] H. Tiftikçi, "Vektör Alanı ile Eğrilerin Takibi ve Seyrüsefer," in VII. ULUSAL HAVACILIK VE UZAY KONFERANSI, Samsun, 2018. [44] Mathworks, "mathworks.com," Mathworks, [Online]. Available: https://www.mathworks.com/help/aeroblks/about-aerospace-coordinatesystems. html. [Accessed 18 10 2022]. [45] P. Serra, Image-Based Visual Servo Control of Aerial Vehicles (Phd Thesis), Lisbon: University of Lisbon, 2016. [46] G. Verzichelli, "Development of an Aircraft Landing Gears Model with Steering System in Modelica-Dymola," The Modelica Association, 2008. [47] B. L. Stevens and F. L. Lewis, Aircraft Control and Simulation, New York: John Wiley and Sons Inc., 1992. [48] J. C. D. van Zundert, "Direction cosine matrix based IMU implementation in Matlab/Simulink," Eindhoven University of Technology, Eindhoven, 2013. [49] "depositphotos," [Online]. Available: https://tr.depositphotos.com/7305199/stock-photo-monte-real-portugal-april- 7.html. [Accessed 22 01 2023]. [50] E. Muir and D. Moormann, "Description of the HIRM Model," in Robust Flight Control Design Challenge Problem Formulation and Manual: the High Incidence Research Model (HIRM), Group for Aeronautical Research and Technology in Europe (GARTEUR), 1997, pp. 5-25. [51] Mathworks Inc., "Mathworks Help Center," Mathworks Inc., [Online]. Available: https://www.mathworks.com/help/aeroblks/drydenwindturbulencemodelcontinu ous.html. [Accessed 21 October 2022]. [52] İ. Gümüşboğa and A. İftar, "Aircraft Trim Analysis by Particle Swarm Optimization," Journal of Aeronautics and Space Technologies (JAST), vol. 12, no. 2, pp. 185-196, 2019. [53] Wikipedia, "Wikipedia," [Online]. Available: https://en.wikipedia.org/wiki/Secant_method#/media/File:Secant_method.svg. [Accessed 25 10 2022]. [54] H. Aktan, F-16 flight control system design by using continuous time generalized predictive control (Master's Thesis), Ankara: Hacettepe University, 2018. [55] E. Kutluay and E. Hatipoğlu, "Geometric Path Planning for Parallel Parking and Relevant Parameters," Advances in Automotive Engineering, vol. 2, no. 1, pp. 1- 14, 2021. [56] S. Martin, "boldmethod.com," [Online]. Available: https://www.boldmethod.com/learn-to-fly/regulations/runway-markings-andspacing- fly-better-patterns-to-landing-explained/. [Accessed 29 March 2022]. [57] Y. Shtessel, C. Edwards, L. Fridman and A. Levant, Sliding Mode Control and Observation, New York, Heidelberg, Dordrecht, London: Springer, 2014. [58] US Dept. of Defence, "Military Specification Flying Qualities of Piloted Airplanes (MIL-F 8785)," US Dept. of Defence, 1980. [59] C. Brezinski and J. Van Iseghem, "Pade Approximations," in Handbook of Numerical Analysis, Lille, Elsevier, 2005, pp. 47-222. [60] Mathworks, "mathworks.com," Mathworks, [Online]. Available: https://www.mathworks.com/help/control/ref/pade.html. [Accessed 5 11 2022]. [61] Mathworks, "mathworks.com," Mathworks, [Online]. Available: https://www.mathworks.com/help/simulink/slref/anti-windup-control-using-apid- controller.html. [Accessed 5 11 2022]. [62] W. B. Cleveland, "NASA Technical Note TN D-8331 FIRST-ORDER-HOLD INTERPOLATION DIGITAL-TO-ANALOG CONVERTER WITH APPLICATION TO AIRCRAFT SIMULATION," NASA, Moffett Field CA., 1976. [63] B. L. Stevens and F. L. Lewis, Aircraft Control and Simulation, New York: John Wiley and Sons Inc., 1992.tr_TR
dc.identifier.urihttps://hdl.handle.net/11655/33309
dc.description.abstractWithin the scope of this thesis, a 6-degree-of-freedom model of a combat aircraft is created. Apart from the flight dynamics, landing gear dynamics on the ground are also modeled. After that, a robust autolanding system is designed for the autoland part after the main landing gears touch the ground until the aircraft stops. For the outer guidance loop line following guidance algorithms are compared and the linear sliding mode guidance algorithm is found to be the best in terms of the combination of line tracking and required control effort. For the inner autopilot loop sliding mode control (SMC) and proportional integral derivative (PID) control are used. Feedforward gains are also added for increased disturbance rejection. The designed autoland systems are tested against crosswind, brake failures, steering failure, and decreased cornering power factor for main landing gear tires. It has been found that SMC is as robust as PID control for inner loop applications.tr_TR
dc.language.isoentr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectMuharip hava aracıtr_TR
dc.subjectOtomatik iniştr_TR
dc.subjectGürbüz kontroltr_TR
dc.subjectKayan kip kontroltr_TR
dc.subjectİniş takımı modelitr_TR
dc.subjectCombat aircrafttr_TR
dc.subjectLanding gear modeltr_TR
dc.subjectAutolandtr_TR
dc.subjectRobust controltr_TR
dc.subjectSliding mode controltr_TR
dc.subject.lcshMakina mühendisliğitr_TR
dc.titleRobust Autolanding System Design for a Combat Aircraft on the Groundtr_TR
dc.title.alternativeMuharip Hava Aracı İçin Yerde Gürbüz Otomatik İniş Sistemi Tasarımıtr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetBu tez kapsamında muharip bir hava aracı 6 serbestlik dereceli olarak modellenmiştir. Havadaki dinamiğe ek olarak yerdeki dinamik için de 3 tekerlekli bir iniş takımı modeli oluşturulmuştur. Daha sonrasında bu model kullanılarak hava aracının iniş esnasında tekerleği yere koymasından durmasına kadar olan süreç için gürbüz bir otomatik iniş sistemi tasarlanmıştır. Literatürdeki çizgi takip algoritmaları karşılaştırılmış ve çizgi takip ve kontrol eforu birlikte değerlendirildiğinde doğrusal kayan kip güdüm kanununun en başarılı olduğu bulunmuştur. İç döngü otopilot tasarımı için kayan kip kontrol (SMC) ve doğrusal integral türev (PID) kontrol yöntemleri kullanılmıştır. Bozucu bastırma kapasitesini arttırmak için ileri besleme kazançları kullanılmıştır. Tasarlanan otomatik iniş sistemleri yan rüzgar, fren arızaları, direksiyon arızası ve ana iniş takımı tekerleklerinin yanal etkinliklerindeki değişimlere göre test edilmiştir. Sonuç olarak SMC denetleyicinin en az PID denetleyici kadar gürbüz olduğu bulunmuştur.tr_TR
dc.contributor.departmentMakine Mühendisliğitr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2023-06-05T13:27:19Z
dc.fundingYoktr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster