Özet
ŞAHİN, M. C. Three Dimensional Performance Analysis Of Cyberknife Synchrony®
Respiratory Tracking System Using Polymer Gel Dosimeter. Hacettepe University
Institute of Health Sciences, Thesis in Radiotherapy Physics Program, Ankara,
2017. Tumor movement is a challenging issue for the precise delivery of radiation
for thoracic tumors. The Synchrony respiratory motion tracking system (RMTS) of
Cyberknife® robotic radiosurgery unit synchronizes radiation beam delivery with the
respiration induced tumor motion. This study aims to investigate the performance
of Synchrony RMTS for different movement widths using polymer gel dosimetry. To
the best of our knowledge this is the first study to make the three dimensional
performance analysis of Synchrony RMTS.
The MultiPlan® treatment planning system (TPS) of Cyberknife® was used to deliver
4 Gy to a tumor of 1X1X1 cm3. BrainLab Gating lung phantom was used to simulate
lung movements with three different amplitudes (1 cm, 2 cm and 3 cm). Three
fiducials were inserted to the phantom for tracking. Radiochromic film and polymer
gel dosimetry were used and measurements were compared with the dose
distributions acquired from the TPS. The dose information of irradiated gel were
read out using 1.5 T magnetic resonance imaging. The gamma index values were
analysed using the Ashland FilmQA Pro 3.0 software for film dosimeters and
Polygevero software for gel dosimeters using the 3mm/3% criteria. PolyGevero
gamma index value of ≤1 is accepted as a passing criteria according to the
literature.
The mean 3 mm 3% gamma index values of film dosimetry were 92.6±1.94%,
91.0±4.00%, 90.3±2.04% for tumor motions of 1 cm, 2 cm and 3 cm, respectively
(p<0.001). For polymer gel dosimetry, the mean gamma index values calculated
over almost three million points were 0.56±0.10, 0.60±0.24 and 0.65±0.30 for
tumor motions of 1 cm, 2 cm and 3 cm, respectively (p<0.001). Although the
difference was statistically significant for 3 different amplitudes, the performance of
the system was within the acceptance limits.
Three dimensional performance analysis showed that Cyberknife Synchrony® RMTS
is successful in tumor tracking regardless of the amplitude of movement.
Künye
1) Podgorsak, E.B. (2005). Radiation Oncology Physics: A Handbook for
Teachers and Students. Vienna, Austria: IAEA.
2) Luxton G, Zbigniew P, Jozsef G, et al. Stereotactic radiosurgery : principle and
comprasion of treatment methods, Neurosurgery. 1993;32:241
3) Sağer Ö., Küçük Hücreli Dişi Akciğer Kanseri Radyoterapisinde Aktif Nefes
Kontrolü Sisteminin Tümör Hareketi Ve Fiziksel Akciğer Parametrelerine
Etkisinin Değerlendirilmesi. 2010. Gülhane Askeri Tıp Akademisi. s.5
4) American Joint Committee on Cancer (AJCC)A Companion to the Seventh
Editions of theAJCC Cancer Staging Manual and Handbook .2012.s.:311-315.
5) Keall, P.J., Mageras, G.S., Balter, J.M., The management of respiratory
motion in radiation oncology report of AAPM Task Group 76. Med
Phys 2006; 33:3874-3900.
6) Seppenwoolde, Y., Shirato, H., Kitamura, K., Precise and real-time
measurement of 3D tumor motion in lung due to breathing and
heartbeat,measured during radiotherapy. Int J Radiat Oncol Biol Phys 2002;
53:822-834.
7) Vedam, S.S., Kini, V.R., Keall, P.J., Ramakrishnan, V., Mostafavi,
H.,Mohan,R.,Quantifying the predictability of diaphragm motion during
respiration with a noninvasive external marker. Med Phys 2003; 30:505-513.
8) George, R., Vedam, S.S., Chung, T.D., Ramakrishnan, V., Keall, P.J.,The
application of the sinusoidal model to lung cancer patient respiratory
motion. Med Phys 2005; 32:2850-2861.
9) Barnes, E.A., Murray, B.R., Robinson, D.M., Underwood, L.J.,Hanson, J., Roa,
W.H., Dosimetric evaluation of lung tumorimmobilization using breath hold
at deep inspiration. Int J RadiatOncol Biol Phys 2001; 50:1091-1098.
10) Chen, Q.S., Weinhous, M.S., Deibel, F.C., Ciezki, J.P., Macklis, R.M.,
fluoroscopic study of tumor motion due to breathing: facilitating precise
radiation therapy for lung cancer patients. Med Phys 2001; 28:1850-
1856.
11) Ekberg, L., Holmberg, O., Wittgren, L., Bjelkengren, G., Landberg, T.,What
margins should be added to the clinical target volume in radiotherapy
treatment planning for lung cancer Radiother Oncol 1998; 48:71-77.
12) Engelsman, M., Damen, E.M., De Jaeger, K., van Ingen, K.M.,Mijnheer, B.J.,
The effect of breathing and set-up errors on the cumulative dose to a lung
tumor. Radiother Oncol 2001; 60:95-105.
13) Erridge, S.C., Seppenwoolde, Y., Muller, S.H., Portal imaging toassess set-up
errors, tumor motion and tumor shrinkage during conformal radiotherapy of
non-small cell lung cancer. RadiotherOncol 2003; 66:75-85.
70
14) Ross, C.S., Hussey, D.H., Pennington, E.C., Stanford, W.,Doornbos, J.F.,
Analysis of movement of intrathoracic neoplasmsusing ultrafast
computerized tomography. Int J Radiat Oncol BiolPhys 1990; 18:671-677.
15) Grills, I.S., Yan, D., Martinez, A.A., Vicini, F.A., Wong, J.W., Kestin,L.L.,
Potential for reduced toxicity and dose escalation in thetreatment of
inoperable non-small-cell lung cancer: a comparison ofintensity-modulated
radiation therapy (IMRT), 3D conformalradiation, and elective nodal
irradiation. Int J Radiat Oncol Biol Phys2003; 57:875-890.
16) Hanley, J., Debois, M.M., Mah, D., Deep inspiration breath-holdtechnique for
lung tumors: the potential value of targetimmobilization and reduced lung
density in dose escalation. Int JRadiat Oncol Biol Phys 1999; 45:603-611.
17) Murphy, M.J., Martin, D., Whyte, R., Hai, J., Ozhasoglu, C., Le,Q.T., The
effectiveness of breath-holding to stabilize lung andpancreas tumors during
radiosurgery. Int J Radiat Oncol Biol Phys2002; 53:475-482.
18) Plathow, C., Ley, S., Fink, C., Analysis of intrathoracic tumormobility during
whole breathing cycle by dynamic MRI. Int J Radiat Oncol Biol Phys 2004;
59:952-959.
19) Seppenwoolde, Y., Shirato, H., Kitamura, K., Precise and realtimemeasurement
of 3D tumor motion in lung due to breathing and
heartbeat, measured during radiotherapy. Int J Radiat Oncol BiolPhys 2002;
53:822-834.
20) Shimizu, S., Shirato, H., Ogura, S., Detection of lung tumor movement in realtime
tumor-tracking radiotherapy. Int J RadiatOncol Biol Phys 2001; 51:304-
310.
21) Sixel, K.E., Ruschin, M., Tirona, R., Cheung, P.C., Digitalfluoroscopy to
quantify lung tumor motion: potential for patientspecific planning target
volumes. Int J Radiat Oncol Biol Phys 2003;57:717-723.
22) Stevens, C.W., Munden, R.F., Forster, K.M., Respiratory drivenlung tumor
motion is independent of tumor size, tumor location, andpulmonary
function. Int J Radiat Oncol Biol Phys 2001; 51:62-68.
23) Neicu, T., Berbeco, R., Wolfgang, J., Jiang, S.B., Synchronizedmoving
aperture radiation therapy (SMART): improvement ofbreathing pattern
reproducibility using respiratory coaching. PhysMed Biol 2006; 51:617-636.
24) Kini, V.R., Vedam, S.S., Keall, P.J., Patil, S., Chen, C., Mohan, R.,Patient
training in respiratory-gated radiotherapy. Med Dosim 2003;28:7-11.
25) Davies, S.C., Hill, A.L., Holmes, R.B., Halliwell, M., Jackson, P.C., Ultrasound
quantitation of respiratory organ motion in the upper abdomen. Br J Radiol
1994; 67:1096-1102.
71
26) Berbeco, R.I., Nishioka, S., Shirato, H., Chen, G.T., Jiang, S.B., Residual motion
of lung tumours in gated radiotherapy with external respiratory surrogates.
Phys Med Biol 2005; 50:3655-3667.
27) “Lax, I., Blomgren, H., Naslund, I., Svanstrom, R., Stereotacticradiotherapy of
malignancies in the abdomen. Methodologicalaspects. Acta Oncol 1994;
33:677-683.
28) McGarry, R.C., Papiez, L., Williams, M., Whitford, T., Timmerman,R.D.,
Stereotactic body radiation therapy of early stage non smallcelllung
carcinoma: phase I study. Int J Radiat Oncol Biol Phys2005; 63:1010-1015.
29) Mah, D., Hanley, J., Rosenzweig, K.E., Technical aspects of the deep
inspiration breath hold technique in the treatment of thoracic cancer. Int J.
Radiat Oncol Biol. Phys 2000; 48:1175-1185.
30) Rosenzweig, K.E., Hanley, J., Mah, D., The deep inspiration breathhold
technique in the treatment of inoperable non-small-cell lung cancer. Int J
Radiat Oncol Biol Phys 2000; 48:81-87.
31) Kim, D.J., Murray, B.R., Halperin, R., Roa, W.H., Held-breath self gating
technique for radiotherapy of non-small-cell lung cancer: a feasibility study.
Int J Radiat Oncol Biol Phys 2001; 49:43-49.
32) Remouchamps V.M., Letts N., Vicini F.A., Initial clinical experience with
moderate deep inspiration breath hold using anactive breathing control
device in the treatment of patients with leftsidedbreast cancer using
external beam radiation therapy. Int JRadiat Oncol Biol Phys 2003; 56:704-
715.
33) Stromberg, J.S.,Sharpe, M.B., Kim, L.H., Active breathing control(ABC) for
Hodgkin's disease: reduction in normal tissue irradiation with deep
inspiration and implications for treatment. Int J RadiatOncol Biol Phys 2000;
48:797-806.
34) Wong, J.W., Sharpe, M.B., Jaffray, D.A., The use of active breathing control
(ABC) to reduce margin for breathing motion. Int JRadiat Oncol Biol Phys
1999; 44:911-919.
35) CK-028096A-TRK. CyberKnife® Tedavi Uygulama Klavuzu. 2009 Accuray.
500022.
36) Harold C. Urschel, Jr. (Editor-in-Chief) John J. Kresl · James D. Luketich Lech
Papiez Robert D. Timmerman (Co-Editors) Raymond A. Schulz (Contributing
Editor) Treating Tumors that Move with Respiration
37) Polymer Gel Dosimetry for Radiation Therapy. Senthil Kumar Dhiviyaraj
Kalaiselven, James Jebaseelan Samuel Emmanvel Rajan.
38) Baldock C, Burford RP, Billingham NC, Wagner GS, Patval S, Badawi R, et al.
Experimental procedure for the manufacture and calibration of
72
Polyacrylamide gel (PAG) for magnetic resonance imaging (MRI) radiation
dosimetry. Phys Med Biol 1998; 43:695-702
39) Gore J. C., Kang Y. S., Schulz R. J. (1984). Measurement of radiation dose
distribution by nuclear magnetic resonance (NMR) imaging. Phys. Med Biol.
29, 1189-1197
40) Spinks J W T and Woods R J 1964 An Introduction to Radiation Chemistry
(New York: Wiley).
41) C. Baldock, Y. De Deene, S. Doran, G. Ibbott, A. Jirasek, M. Lepage, K. B.
McAuley, M. Oldham, L. J. Schreiner. Polymer gel dosimetry. Physıcs In
Medıcıne And Bıology. Phys. Med. Biol. 55 (2010) R1–R63.
doi:10.1088/0031-9155/55/5/R01
42) Swallow A. J., Radiation Chemistry: An Introduction. London: Longman.
Published by Prentice Hall Press, 1973
ISBN10: 058246286X / ISBN13: 9780582462861.
43) Maryanski, M.J., et al., NMR relaxation enhancement in gels polymerized
and cross linked by ionizing radiation: A new approach to 3D dosimetry by
MRI. Magn. Reson. Imaging 1993. 11(2): p. 253-258.
44) Shadi Khoei. Quantıtatıve ultrasound computed tomography ımagıng of
pagat radıatıon dosımetry gel. October, 2013.
45) Fong P.M., Keil D.C., Does M.D. and Gore J.C. (2001). Polymer gels for
magnetic resonance imaging of radiation dose distribution at normal room
atmosphere.Phys. Med. Biol 46, 3105-3113.
46) Baldock C. (2004). Historical overview of gel dosimetry. Third International
Conference on Radiotherapy Gel Dosimetry. Journal of Physics: Conference
Series 3, 1–3.
47) Baldock C., (2006). Historical overview of the development of gel dosimetry:
A personal perspective, 4th International Conference on Radiotherapy Gel
Dosimetry Journal of Physics: Conference Series 56, 14–22
48) Maryanski MJ, Gore JC, Schulz RJ. Three dimensional detection, dosimetry
and imaging ofan energy field by formation of a polymer in a gel. US Patent
#5 321 357, 1994.
49) Maryanski MJ, Schulz RJ, Ibbott GS, Gatenby JC, Xie J, Horton D, et al.
Magnetic resonanceimaging of radiation dose distributions using a polymergel
dosimeter. Phys MedBiol 1994; 39:1437-55.
50) Maryanski MJ, Audet C, Gore JC. Dose response of a BANG polymer gel:
temperaturedependence. Med Phys 1995; 22:951.
51) Maryanski MJ, Audet C, Gore JC. Effects of cross-linking and temperature on
the doseresponse of a BANG polymer gel dosimeter. Phys Med Biol 1997;
42:303-11.
52) Vachier MC, Rutledge DN. Influence of temperature, pH, water content, gel
strength andtheir interactions on NMR relaxation of gelatins analysis of the
calculatedrelaxation times. J Magn Reson Analysis 1996;2:311-20.
53) Audet C, Maryanski MJ, Gore JC. Dose response of the BANG polymer gel
dosimeter:dependence on composition. Med Phys 1995; 22:951.
54) Baldock C, Burford RP, Billingham NC, Cohen D, Keevin SF. Polymer gel
composition inMRI dosimetry. Med Phys 1996; 23:1070.
55) Maryanski MJ, Audet C, Gore JC. Dose response of the BANG polymer gel:
effects of crosslinkingdensity. Med Phys 1995; 22:950.
56) Farajollahi AR, Bonnett DE, Aukett RJ, Radcliffe AJ. The advantages and
limitationsofpolymer gel dosimetry in brachytherapy. J Int Fed Med Biol Eng
1997;35:1012.
57) Zebrowska G, Husson F, Lewa CJ, de Certaintes JD. MRI of radiation dose
distribution in anew tissue equivalent gel dosimeter (PIRA). In: Proc Soc
Magn Reson 3rd ScientificMeeting; 1995 August; Nice, France. California,
USA: Society for MagneticResonance in Medicine: 1102.
58) Kennan RP, Richardson KA, Zhong J, Maryanski MJ, Gore JC. The effects of
cross-linkdensity and chemical exchange on magnetization transfer in
Polyacrylamide gels. JMagn Reson 1996; 110:267-77.
59) Gochberg DF, Kennan RP, Maryanski MJ, Gore JC. The role of specific side
groups and pHin magnetization transfer in polymers. J Magn Reson 1998;
131:191-8.
60) Sittig M. Handbook of toxic and hazardous chemicals and carcinogens (2nd
edn). NewJersey, USA: Noyes Publications, 1985:41
61) De Deene, Y., et al., Validation of MR-based polymer gel dosimetry as a
preclinical three-dimensional verification tool in conformal radiotherapy.
Magnetic Resonance in Medicine, 2000. 43(1): p. 116-125.
62) Mcjury.M, M.O., V P Cosgrove, PS Murphy, S Doran, M O Leach, S Webb,
Radiation dosimetry using polymer gels: methods and applications. The
British Journal of Radiology, 2000. 73: p. 919-929.
63) Ibbott G. S. et al., Three dimensional visualization and measurement of
conformal dose distributions using magnetic resonance imaging of bang 135
polymer gel dosimeters. Int. J. Radiat. Oncol. Biol. Phys. 1997. 38(5): p. 1097-
1103
64) Deene Y.D., Fundamentals of MRI measurements for gel dosimetry. Journal
of Physics: Conference Series, 2004. 3(1): p. 87-114
65) Oldham, M., et al., An investigation into the dosimetry of a nine-field
tomotherapy irradiation using BANG-gel dosimetry. Phys. Med. Biol, 1998.
43: p. 1113-1132.
66) De Deene, Y., et al., Artefacts in multi-echo T 2 imaging for high-precision gel
dosimetry: I. Analysis and compensation of eddy currents. Phys. Med. Biol.,
2000a. 45(7): p. 1807-1823.
67) De Deene, Y. and C. De Wagter, Artefacts in multi-echo T2 imaging for highprecision
gel dosimetry: III. Effects of temperature drift during scanning.
Phys Med Biol, 2001. 46(10): p. 2697-711.
68) Karadag, N. (2005). İki Farklı Enerjide Kodak-EDR2 ve X-Omat V2 Filmlerinin
Karakteristik Özelliklerinin İncelenmesi, Yüksek lisans tezi,Hacettepe
Üniversitesi, Ankara.
69) European Society for Therapeutic Radiology and Oncology (ESTRO)
(2006).Methods for in vivo dosimetry in external radiotherapy. Van Dam, J.,
Marinello,G. Booklet no:1. Second Edition. Belgium. 37-51.
70) Karaçam, S. (2007). Yüksek Doz Hızlı (HDR) Brakiterapi UygulamalarınınKalite
Kontrolünde Gafkromik Film Kullanımının Arastırılması, Doktora tezi,İstanbul
Üniversitesi, İstanbul.
71) American Association of Physicists in Medicine (AAPM) (1998),
Radiochromicfilm dosimetry: Recommendations of AAPM Radiation
Therapy CommitteeTask Group 55. Med. Phys. 25, 2093-2115, USA.
72) Khan, F.M. (2003). The Physics of Radiation Therapy. Third Edition.
Baltimore:Lippincott Williams and Wilkins.
73) Sankar, A., Komanduri, M., Nehru, R., Kurup, G., Muralı, V., Enke C. (2006).
Comparison of Kodak EDR2 and Gafchromic EBT film forintensity modulated
radiation therapy dose distribution verification. MedicalDosimetry, 31(4),
273-282.
74) Gafchromic® EBT2 Self-Developing Film For Radiotherapy Dosimetry. (2009).
International Specialty Products (ISP) Publishing.
75) Başer T. 2011. Cyberknıfe® Robotik Radyocerrahi Cihazının Tedavi Planlama
Sisteminin Dozimetrik Kontrolü. Tamer Başer. Yüksek Lisans Tezi. Hacettepe
Üniversitesi.
76)http://www3.gehealthcare.com/en/products/categories/magnetic_resonance_i
maging/signa_hdxt_1-5t#tabs/tab860B307EC43941AE818918C20E34D6CD
(Erişim tarihi 07 Ocak 2017)
77) http://www.epson.com/cmcupload/0/000/142/237/1000XLInfoSheetR1.pdf
(Erişim Tarihi 07 Ocak 2017).
78) http://www.ashland.com/products/filmqa-pro-software (Erişim tarihi 07
Ocak 2017)
79) Kozicki M., Maras P., Karwowski A. C. Software for 3D radiotherapy
dosimetry.Validation. Phys. Med. Biol. 59 (2014) 4111–4136.
doi:10.1088/0031-9155/59/15/4111
80) Peter M Fong, Derek C Keil, Mark D Does, John C Gore. Polymer gels for
magnetic resonance imaging of radiation dose distributions at normal room
atmosphere. Phys. Med. Biol. 46 (2001) 3105-3113.
81) Humphries M. S., Taylor D. D., Measurement of Synchrony accuracy using an
independent tracking system and the Synchrony Quality Assurance tool.
therss.org/document/docdownload.aspx?docid=404.5a5e00c0-fb7c- 412bb65d-
816d04d6d7dc.pdf
82) Nioutsikou E., Seppenwoolde Y., Heijmen B. Dosimetric investigation of lung
tumor motion compensation with a robotic respiratory tracking system: An
experimental study. Med. Phys. 35,1232 (2008);
http://dx.doi.org/10.1118/1.2842074
83) Rohini G., Suh Y., Murphy M., Williamson J.. On the accuracy of a moving
average algorithm for target tracking during radiation therapy treatment
delivery. Med Phys. 2008 Jun;35(6):2356-65. DOI:10.1118/1.2921131
84) Månsson S. , Karlsson A. , Gustavsson H., Christensson J., Bäck S.. Dosimetric
verification of breathing adapted radiotherapy using polymer gel. 2006.
Journal of Physics: Conference Series 56 300–303. doi:10.1088/1742-
6596/56/1/055
85) Ceberg S., Gagne I., Gustafsson H.RapidArc treatment verification in 3D using
polymer gel dosimetry and Monte Carlo simulation. 2010. Physics in
Medicine and Biology, Volume 55, Number
17.http://dx.doi.org/10.1088/0031- 9155/55/17/001.
86) OldhamM., Sakhalkar H., GuoP.. An investigation of the accuracy of an IMRT
dose distribution using two- and three-dimensional dosimetry techniques.
2008. Med. Phys. 35, 2072; http://dx.doi.org/10.1118/1.2899995