Show simple item record

dc.contributor.advisorErcanoğlu, Murat
dc.contributor.authorDerin Cengiz,Leyla
dc.date.accessioned2021-10-13T07:36:06Z
dc.date.issued2020
dc.date.submitted2020-12-25
dc.identifier.citationAhmed, F., & Kilic, K., Comparison of Fuzzy Extent Analysis Technique and its Extensions with Original Eigen Vector Approach, ICEIS, 2, pp. 174-179, 2016. Altan, Ş., Atan, M., & Kizilkaya, S., Genel Sağlik Durumunu Etkileyen Faktörlerin CHAID Analizi Yöntemi İle İncelenmesi, ODTÜ Örneği, Social Sciences, 10 (2), 92-106, 2015. Alonso, J. A., & Lamata, M. T., Estimation of the Random Index in the Analytic Hierarchy Process, Proceedings of Information Processing and Management of Uncertainty in Knowledge-Based Systems, 1 pp 317-322, 2004. Alonso, J. A., & Lamata, M. T., Consistency in the analytic hierarchy process: a new approach. International journal of uncertainty, fuzziness and knowledge-based systems, 14 (04), 445-459, 2006. Althuwaynee, O. F., Pradhan, B., & Lee, S., Application of an evidential belief function model in landslide susceptibility mapping, Computers & Geosciences, 44, 120-135, 2012. Althuwaynee, O. F., Pradhan, B., Park, H. J., & Lee, J. H., A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping, Catena, 114, 21-36, 2014. Althuwaynee, O. F., Pradhan, B., & Lee, S., A novel integrated model for assessing landslide susceptibility mapping using CHAID and AHP pair-wise comparison, International Journal of Remote Sensing, 37(5), 1190-1209, 2016. Akgun, A., A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey, Landslides, 9 (1), 93-106. 2012. Akgun, A., & Erkan, O., Landslide susceptibility mapping by geographical information system-based multivariate statistical and deterministic models: in an artificial reservoir area at Northern Turkey, Arabian Journal of Geosciences, 9(2), 165. 2016. Aksoy, G., Arhavi (Artvin) ve Çevresinin Heyelan Duyarlılık Analizi, Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon, 2011. Ayalew, L., & Yamagishi, H., The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko mountains, Central Japan, Geomorphology, 65, 15–31, 2005. Ayhan, M. B., A fuzzy AHP approach for supplier selection problem: A case study in a Gear motor company, 2013. Balezentiene L, Streimikiene D, Balezentis T., Fuzzy decision support methodology for sustainable energy crop selection, Renew Sustain Energy Rev 17:83–93, 2013. Baker, S., and Cousins, R. D., Clarification of the Use of CHI-Square and Likelihood Functions in Fits to Histograms, Nuclear Instruments and Methods in Physics Research, 221: 437–442, 1984. Berkan, R. C., & Trubatch, S., Fuzzy system design principles, Wiley-IEEE Press, 1997. Božanić, D., Pamučar, D., & Bojanić, D., Modification of the analytic hierarchy process (AHP) method using fuzzy logic: Fuzzy AHP approach as a support to the decision making process concerning engagement of the group for additional hindering, Serbian Journal of Management, 10 (2), 151-171, 2015. Brans, J. P., Vincke, P., & Mareschal, B., How to select and how to rank projects: The PROMETHEE method, European journal of operational research, 24 (2), 228-238, 1986. Brans, J. P. ve Mareschal, B., PROMETHEE Methods”, içinde Figueira vd. (ed.) Multiple Criteria Decision Analysis, State of the Art Survey, New York, Springer Science, 2005. Brunn, J. H., Dumont, J. F., Graciansky, P., Gutnic, M., Juteau, T., Marcoux, J., Monod, O. and Poisson, A., Outline of the geology of the western Taurides: Geology and History of Turkey, Petroleum Exploration Society of Libya, Tripoli, 225 -255, 1971. Buckley, J. J., Fuzzy hierarchical analysis. Fuzzy sets and systems, 17 (3), 233-247, 1985. Casagli, N., Catani, F., Puglisi, C., Delmonaco, G., Ermini, L., & Margottini, C., An inventory-based approach to landslide susceptibility assessment and its application to the Virginio River Basin, Italy, Environmental and Engineering Geoscience, 10 (3), 203-216, 2004. Can, A., Dagdelenler, G., Ercanoglu, M., & Sonmez, H., Landslide susceptibility mapping at Ovacık-Karabük (Turkey) using different artificial neural network models: comparison of training algorithms. Bulletin of Engineering Geology and the Environment, 78(1), 89-102, 2019. Cappelli, C., Mola, F. and Siciliano, R., A statistical approach to growing a reliable honest tree, Computational Statistic and Data Analysis, vol. 38, 285-299, 2002. Carranza E. J. M., Woldai T, Chikambwe E. M., Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi district, Zambia, Nat Resour Res 14:14–63, 2005. Carranza, E.J.M., Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features, Ore Geology Reviews 35 (3-4), 383–400, 2009. Chambers, M., and Dinsmore. T. W., Advanced Analytics Methodologies: Driving Business Value with Analytics. Upper Saddle River, NJ: Pearson Education. 2014. Chang, D. Y., Applications of the extent analysis method on fuzzy AHP. European journal of operational research, 95 (3), 649-655, 1996. Chang, K. T., Merghadi, A., Yunus, A. P., Pham, B. T., & Dou, J., Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques, Scientific reports, 9(1), 1-21, 2019. Che, V. B., Kervyn, M., Suh, C. E., Fontijn, K., Ernst, G. G., Del Marmol, M. A., ... & Jacobs, P., Landslide susceptibility assessment in Limbe (SW Cameroon): A field calibrated seed cell and information value method, Catena, 92, 83-98, 2012. Chen, D.H., Xu, P., Zhang, W., Chen, J.P., Song, S.Y., Wang, Y.D., Evaluation of landslide hazard degree based on the normal cloud model, Int. J. Earth Sci. Eng., 10 (1), 88–94, 2017. Chen, W., Li, W., Chai, H., Hou, E., Li, X., & Ding, X., GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China, Environmental Earth Sciences, 75(1), 63, 2016. Colkesen, I., Sahin, E. K., & Kavzoglu, T., Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression, Journal of African Earth Sciences, 118, 53-64. 2016. Corominas, J., Copons, R., Vilaplana, J. M., Altimir, J., & Amigó, J., Integrated landslide susceptibility analysis and hazard assessment in the principality of Andorra. Natural Hazards, 30 (3), 421-435, 2003. Csutora, R., & Buckley, J. J., Fuzzy hierarchical analysis: the Lambda-Max method, Fuzzy sets and Systems, 120(2), 181-195, 2001. Çapan, U., Toros Kuşağı Ofiyolit Masiflerinin (Marmaris, Mersin, Pozantı, Pınarbaşı ve Divriği) İç Yapıları, Petrolojisi ve Petrokimyalarına Yaklaşımlar, Doktora Tezi, Hacettepe Üniv. Fen Bil. Enst., 1980. Çellek, S., Sinop-Gerze Yöresinin Heyelan Duyarlilik Analizi. Analizi, Doktora Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon, 2013. Cevik, E., & Topal, T., GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey), Environmental geology, 44(8), 949-962, 2003. Dağdeviren, M., & Erarslan, E., PROMETHEE siralama yöntemi ile tedarikçi seçimi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 23 (1), 2008. Demir, G., Aytekin, M., Akgün, A., Ikizler, S. B., & Tatar, O., A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods, Natural hazards, 65(3), 1481-1506, 2013. Deri̇n, L, Ercanoğlu, M., Heyelan Duyarlılığı, Tehlikesi ve Riski ile İlgili Çalışmalarda Türkiye ve Avrupa Birliği Ülkelerinin Karşılaştırılması, Afet ve Risk Dergisi, 1 (1), 26-38, 2018. Demirel, T., Demirel, N. Ç., & Kahraman, C., Fuzzy analytic hierarchy process and its application. In Fuzzy multi-criteria decision making, (pp. 53-83). Springer, Boston, MA. 2008. Dubois, D., & Prade, H., Operations on fuzzy numbers. International Journal of systems science, 9 (6), 613-626, 1978. Dubois, D., & Prade, H., Fuzzy numbers: An overview, Analysis of fuzzy information, vol. 1: Math. Logic, 1987. Dubois, D., The role of fuzzy sets in decision sciences: Old techniques and new directions, Fuzzy Sets and Systems, 184 (1), 3-28, 2011. Dempster, A.P., Upper and lower probabilities induced by a multivalued mapping, The Annals of Mathematical Statistics 38, 325–339, 1967. Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., ... & Althuwaynee, O. F., Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya, Natural hazards, 65 (1), 135-165, 2013. Eastman, Idrisi Andes Guide to GIS and Image Processing, Clarck University Press, Worcester, Massachusset, USA, 328 p, 2006. Ercanoglu, M., & Gokceoglu, C., Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach, Environmental geology, 41(6), 720-730, 2002. Ercanoglu, M., & Gokceoglu, C., Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey), Engineering Geology, 75 (3-4), 229-250, 2004. Ercanoğlu, M., Kaşmer, Ö., Temiz, N., Adaptation and comparison of expert opinion to analytical hierarchy process for landslide susceptibility mapping, Bulletin of Engineering Geology and the Environment, 67, 565–578, 2008. Ercanoglu, M., & Temiz, F. A., Application of logistic regression and fuzzy operators to landslide susceptibility assessment in Azdavay (Kastamonu, Turkey). Environmental Earth Sciences, 64 (4), 949-964, 2011. Ercanoglu, M., Dağdelenler, G., Özsayin, E., Alkevlı, T., Sönmez, H., Özyurt, N. N., ... & Çetınkaya, S., Application of Chebyshev theorem to data preparation in landslide susceptibility mapping studies: an example from Yenice (Karabük, Turkey) region, Journal of Mountain Science, 13 (11), 1923-1940, 2016. Erakman, B., Meşhur, M., Gül, M., Alkan, H., Öztaş, Y., & Akpinar, M., Fethiye-Köyceğiz-Tefenni-Elmalı-Kalkan arasında kalan alanın jeolojisi [Geology of the area between Fethiye-Köyceğiz-Tefenni-Elmalı-Kalkan.-in Turkish]: 6th Petroleum Congress of Turkey, 1982. Erener, A. R. Z. U., & Düzgün, H. S. B., Landslide susceptibility assessment: what are the effects of mapping unit and mapping method?, Environmental Earth Sciences, 66 (3), 859-877, 2012. Ermini, L., Catani, F., & Casagli, N., Artificial neural networks applied to landslide susceptibility assessment. geomorphology, 66 (1-4), 327-343. 2005. Ersoy, Ş., Fethiye (Muğla) - Gölhisar (Burdur) arasında Güney Dağı ile Kelebekli Dağ ve dolaylarının jeolojisi, Doktora tezi, İstanbul Üniversitesi Fen Bilimi Enstitüsü, 1989. Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z., Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning, Engineering Geology, 102 (3), 99–111, 2008. Fu, B., Li, D.G., Wang, M.K., Review and prospect on research of cloud model. Appl. Res. Comput., 28 (2), 420–426, 2011. Feizizadeh, B., & Blaschke, T., GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran. Natural Hazards, 65 (3), 2105-2128, 2013. Feizizadeh, B., Roodposhti, M. S., Jankowski, P., & Blaschke, T., A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping, Computers & geosciences, 73, 208-221, 2014. Fernandez CI, Del Castillo TF, El Hamdouni R, Montero JC, Verification of landslide susceptibility mapping: A case study, Earth Surf Proc Landforms 24:537–544, 1999. Ghosh, S., Van Westen, C. J., Carranza, E. J. M., Ghoshal, T. B., Sarkar, N. K., & Surendranath, M. A quantitative approach for improving the BIS (Indian) method of medium-scale landslide susceptibility, Journal of the Geological Society of India, 74(5), 625, 2009. Gogus, O., & Boucher, T. O., Strong transitivity, rationality and weak monotonicity in fuzzy pairwise comparisons, Fuzzy Sets and Systems, 94(1), 133-144, 1998. Golden, B. L. and Wang, Q., An alternative measure of consistency, in Analytic Hierarchy Process: Applications and Studies, (eds) B. L. Golden, A. Wasil and P.T. Harker (New-York, Springer Verlag) pp. 68-8, 1990. Gong, Y.B., Hu, N., Liu, G.F., Feng, L.P., Risk evaluation model of flood and drought disaster based on normal cloud information diffusion method: a case study in Xuzhou City, Syst. Eng. 34 (11), 54–58, 2016. Gökçe, O., Özden, Ş., Demir, A., Türkiye’de Afetlerin Mekansal ve İstatistiksel Dağılımı: Afet Bilgileri Envanteri. Afet İşleri Genel Müdürlüğü, Ankara, 117 s., 2008. Gökçeoğlu, C., & Ercanoğlu, M., Heyelan duyarlılık haritalarının hazırlanmasında kullanılan parametrelere ilişkin belirsizlikler, Yerbilimleri Dergisi, 5(23), 189-206, 2001. Guo,C.G.,Liu,Y.X.,Hou, S.M. and Wang,W., Innovative Product Design Based on Customer Requirement Weight Calculation Model,International Journal of Automation and Computing, Vol.7, No.4, pp. 578-583, 2010. Guo, Z., Chen, W., Zhang, J., Ye, F., Liang, X., He, F., & Guo, Q., Hazard assessment of potentially dangerous bodies within a cliff based on the Fuzzy-AHP method: a case study of the Mogao Grottoes, China, Bulletin of Engineering Geology and the Environment, 76(3), 1009-1020, 2017. Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P., Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy, Geomorphology, 31, 181–216, 1999. Günay, Y., Bölükbaşı, S. ve Yoldemir, O., Beydağlarının stratigrafisi ve yapısı, Türkiye 6. Petrol Kongresi, Nisan 1982, 91–101, 1982. Hasekioğulları, G. D., & Ercanoglu, M., A new approach to use AHP in landslide susceptibility mapping: A case study at Yenice (Karabuk, NW Turkey), Natural Hazards, 63 (2), 1157–1179, 2012. He, Y., Assessment research of Bijie drought risk based on cloud model, J. Risk Anal. Crisis Response, 3 (4), 192–200, 2013. Hoare,R., Using CHAID for Classification Problems, New Zealand Association 2004 Conference,Wellington,s.1., 2004. Huang, F., Yin, K., Huang, J., Gui, L., & Wang, P., Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine, Engineering Geology, 223, 11-22, 2017. Hung, L. Q., Van, N. T. H., Van Son, P., Khanh, N. H., & Binh, L. T., Landslide susceptibility mapping by combining the analytical hierarchy process and weighted linear combination methods: a case study in the upper Lo River catchment (Vietnam), Landslides, 13 (5), 1285-1301, 2016. Intarawichian, N., & Dasananda, S., Analytical Hierarchy Process for Landslide Susceptibility Mapping in Lower Mae Chaem Watershed, Northern Thailand. Suranaree Journal of Science & Technology, 17 (3), 2010. Intarawichian, N., & Dasananda, S., Frequency ratio model based landslide susceptibility mapping in lower Mae Chaem watershed, Northern Thailand. Environmental Earth Sciences, 64 (8), 2271-2285, 2011. Jia, X.L., Dai, Q.M., Yang, H.Z., Susceptibility zoning of karst geological hazards using machine learning and cloud model, Clust. Comput. 2, 1–8, 2017. Juang C. H., Lee D. H., Sheu C., Mapping slope failure potential using fuzzy sets, J Geotech Eng ASCE, 118 (3):475–493, 1992. Kanungo, D. P., Arora, M. K., Sarkar, S., & Gupta, R. P., A fuzzy set based approach for integration of thematic maps for landslide susceptibility zonation, Georisk, 3 (1), 30-43. 2009. Kass, G. V.. An Exploratory Technique for Investigating Large Quantities of Categorical Data, Applied Statistics, 29: 119-127, 1980. Kayastha, P., Dhital, M. R., & De Smedt, F., Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal, Computers & Geosciences, 52, 398-408, 2013. Kavzoğlu, T., Çölkesen, İ., & Şahin, E. K., Investigation of the Effects of Factors Used in Production of Landslide Susceptibility Maps: A Case Study in Düzköy, IV. In Remote Sensing and Geographic Information Systems Symposium (UZAL-GIS 2012), Oct., Zonguldak, 2012. Kavzoglu, T., Sahin, E. K., & Colkesen, I., Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression, Landslides, 11 (3), 425-439, 2014. Khosravi, K., Nohani, E., Maroufinia, E., & Pourghasemi, H. R., A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique, Natural Hazards, 83(2), 947-987, 2016. Kilincci, O., & Onal, S. A., Fuzzy AHP approach for supplier selection in a washing machine company, Expert systems with Applications, 38(8), 9656-9664, 2011. Lee, S., Ryu, J. H., Min, K., & Won, J. S., Landslide susceptibility analysis using GIS and artificial neural network, Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 28 (12), 1361-1376, 2003. Lee, S., Talib, J.A., Probabilistic landslide susceptibility ve factor effect analysis, Environmental Geology, 47: 982-990, 2005. Lee, S., Ryu, J. H., & Kim, I. S., Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea, Landslides, 4 (4), 327-338, 2007. Lee, S., Song, K. Y., Oh, H. J., & Choi, J., Detection of landslides using web-based aerial photographs and landslide susceptibility mapping using geospatial analysis, International Journal of Remote Sensing, 33 (16), 4937-4966, 2012. Li, D.R., Shao, Z.F., Spatial information multi-grid and its functions, Geospat. Inf. 3 (4), 1–5, 2005. Li, D.Y., Liu, C.Y., Gan, W.Y., A new cognitive model: cloud model, Int. J. Intell. Syst., 24 (3), 357–375, 2009. Li, T. S., & Huang, H. H., Applying TRIZ and Fuzzy AHP to develop innovative design for automated manufacturing systems, Expert systems with applications, 36 (4), 8302-8312, 2009. Link-1, https://wiki.netcad.com.tr/pages/viewpage.action?pageId=217394063 (Erişim tarihi: 7 Ocak 2020) Liu, F., Zhang, W. G., & Zhang, L. H., Consistency analysis of triangular fuzzy reciprocal preference relations, European Journal of Operational Research, 235 (3), 718-726, 2014. Liu, W., & Cui, J., Entropy coefficient method to evaluate the level of sustainable development of China’s sports, International Journal of Sports Science and Engineering, 2 (2), 72-78, 2008. Malczewski, J., GIS and Multicriteria Decision Analysis. New York: John Wiley & Sons., 1999. Mallick, J., Singh, R. K., AlAwadh, M. A., Islam, S., Khan, R. A., & Qureshi, M. N., GIS-based landslide susceptibility evaluation using fuzzy-AHP multi-criteria decision-making techniques in the Abha Watershed, Saudi Arabia, Environmental Earth Sciences, 77 (7), 276, 2018. Mandal, B., & Mandal, S., Analytical hierarchy process (AHP) based landslide susceptibility mapping of Lish river basin of eastern Darjeeling Himalaya, India, Advances in Space Research, 2018. Mardani, A., Jusoh, A., MD Nor, K., Khalifah, Z., Zakwan, N., & Valipour, A., Multiple criteria decision-making techniques and their applications–a review of the literature from 2000 to 2014, Economic Research-Ekonomska Istraživanja, 28 (1), 516-571, 2015. Marjanović, M., Kovačević, M., Bajat, B., & Voženílek, V., Landslide susceptibility assessment using SVM machine learning algorithm, Engineering Geology, 123 (3), 225-234, 2011. McBratney, A.B., Odeh, I. O. A., Application of fuzzy sets in soil science: fuzzy logic, fuzzy measurements and fuzzy decisions. Geoderma 77:85–113. 1997. Meng, Q., Miao, F., Zhen, J., Wang, X., Wang, A., Peng, Y., & Fan, Q., GIS-based landslide susceptibility mapping with logistic regression, analytical hierarchy process, and combined fuzzy and support vector machine methods: a case study from Wolong Giant Panda Natural Reserve, China, Bulletin of Engineering Geology and the Environment, 75 (3), 923-944, 2016. Meşhur, M., Yoldemir, O., Akpınar, M., Öztaş, Y., & Alkan, H., Batı Torosların jeolojisi ve petrol olanakları raporu, Türkiye petrolleri Anonim ortaklığı raporu, Ankara, 1989. Mokarram, M., & Zarei, A. R., Landslide susceptibility mapping using fuzzy-AHP, Geotechnical and Geological Engineering, 36 (6), 3931-3943, 2018. Moreiras, S. M., Landslide susceptibility zonation in the Rio Mendoza valley, Argentina, Geomorphology, 66 (1-4), 345-357, 2005. Myers JH, and Alpert MI., Determinant buying attitudes: meaning and measurement, J Mark, 32, 13–20, 1968 Mokarram, M., & Zarei, A. R., Landslide Susceptibility Mapping Using Fuzzy-AHP, Geotechnical and Geological Engineering, 36 (6), 3931-3943, 2018. Mondal, S., & Maiti, R., Landslide susceptibility analysis of Shiv-Khola watershed, Darjiling: a remote sensing & GIS based Analytical Hierarchy Process (AHP), Journal of the Indian Society of Remote Sensing, 40 (3), 483-496, 2012. Mu, E., & Pereyra-Rojas, M., Understanding the analytic Hierarchy process, In Practical Decision Making, Springer, pp. 7-22), 2017. Muğla İl Afet ve Acil Durum Müdürlüğü, Muğla İli Fethiye İlçesi Doğal Afet Tehlikeleri, https://geka.gov.tr/uploads/pages_v/mugla-fethiye-afet-tehlike-analizi-2013.pdf (Erişim tarihi: 7 Ağustos 2018) Mukherjee, K., Supplier Selection: An MCDA-Based Approach, Springer, 2017. Najmi, A., & Makui, A., Providing hierarchical approach for measuring supply chain performance using AHP and DEMATEL methodologies, International Journal of Industrial Engineering Computations, 1 (2), 199-212, 2010. Nefeslioglu, H. A., Sezer, E., Gokceoglu, C., Bozkir, A. S., Duman, T. Y., & Toma, C., Assessment of Landslide Susceptibility by Decision Trees in the Metropolitan Area of Istanbul, Turkey, Mathematical Problems in Engineering, 56, 2009. Nefeslioglu, H. A., San, B. T., Gokceoglu, C., & Duman, T. Y., An assessment on the use of Terra ASTER L3A data in landslide susceptibility mapping. International journal of applied earth observation and geoinformation, 14 (1), 40-60, 2012. Nefeslioglu, H. A., Sezer, E. A., Gokceoglu, C., & Ayas, Z., A modified analytical hierarchy process (M-AHP) approach for decision support systems in natural hazard assessments, Computers & Geosciences, 59, 1-8, 2013. Nicu, I. C., & Asăndulesei, A., GIS-based evaluation of diagnostic areas in landslide susceptibility analysis of Bahluieț River Basin (Moldavian Plateau, NE Romania). Are Neolithic sites in danger?, Geomorphology, 314, 27-41, 2018. Nsengiyumva, J. B., Luo, G., Nahayo, L., Huang, X., & Cai, P., Landslide susceptibility assessment using spatial multi-criteria evaluation model in Rwanda, International journal of environmental research and public health, 15 (2), 243, 2018. Oh, H. J., & Pradhan, B., Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Computers & Geosciences, 37 (9), 1264-1276, 2011. Okalp, K., Landslide Susceptibility Assessment of Turkey Using Qualitative and Semi-Quantitative Methods, Doktora Tezi, Fen Bilimleri Enstitüsü, ODTÜ, 2013. Osna, T., Sezer, E. A., & Akgun, A., GeoFIS: an integrated tool for the assessment of landslide susceptibility, Computers & Geosciences, 66, 20-30, 2014. Orak, S., Geological Properties of Mass Wasting of Elmalı Formation (Eocene-Miocene; Muğla-SW Turkey), Master Thesis, Graduate School of Natural and Applied Sciences, Department of Geological Engineering, Muğla Sıtkı Koçman University, 2017. Orak, S., Gül, M., Karacan, E., & Özbek, A., Mass Wasting in Clastic Rocks (Elmalı Formation Upper Eocene-Lower Miocene; Muğla-SW Turkey), Geotechnical and Geological Engineering, 37 (5), 3861-3880, 2019. Ozdemir, A., & Altural, T., A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey, Journal of Asian Earth Sciences, 64, 180-197, 2013. Önalan, M., Elmalı-Kaş (Antalya) arasındaki alanın jeolojisi, Ü. FF Monografileri, 29, 139, 1979. Özgül, N., Torosların bazı temel jeolojik özellikleri, Türkiye Jeoloji Kurultayı Bülteni, cilt: 19, sayı: 1, sayfa: 65-78, 1976. Parise, M., & Jibson, R. W., A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California earthquake, Engineering geology, 58 (3-4), 251-270, 2000. Park, N. W., Application of Dempster-Shafer theory of evidence to GIS-based landslide susceptibility analysis, Environmental Earth Sciences, 62 (2), 367-376, 2011. Park, S., Choi, C., Kim, B., & Kim, J., Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea, Environmental earth sciences, 68 (5), 1443-1464, 2013. Park, I., & Lee, S., Spatial prediction of landslide susceptibility using a decision tree approach: a case study of the Pyeongchang area, Korea, International Journal of Remote Sensing, 35 (16), 6089-6112, 2014. Patriche, C. V., Pirnau, R., Grozavu, A., & Rosca, B., A comparative analysis of binary logistic regression and analytical hierarchy process for landslide susceptibility assessment in the Dobrov River Basin, Romania, Pedosphere, 26 (3), 335-350, 2016. Pehlivan, G. CHAID Analizi ve Bir Uygulama, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2006. Pradhan, B., A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS, Computers & Geosciences, 51, 350-365, 2013. Pradhan, B. (Ed.), Laser scanning applications in landslide assessment: Spatial Prediction of Landslide-Prone Areas Through k-Nearest Neighbor Algorithm and Logistic Regression Model Using High Resolution Airborne Laser Scanning Data, Springer, 2017a. Pradhan, B. (Ed.), Laser scanning applications in landslide assessment: Performance Evaluation and Sensitivity Analysis of Expert-Based, Statistical, Machine Learning, and Hybrid Models for Producing Landslide Susceptibility. Springer, 2017b. Poisson, A., Recherches géoloques dans les Taurides occidentales (Turquie). Thèse de Docteur des Sciences, Université de Paris Sud (Orsay), 795 p., 1977. Pourghasemi, H. R., Mohammady, M., & Pradhan, B., Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran, Catena, 97, 71–84, 2012. Pourghasemi, H. R., Moradi, H. R., & Aghda, S. F., Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances, Natural hazards, 69 (1), 749-779, 2013a. Pourghasemi, H. R., Jirandeh, A. G., Pradhan, B., Xu, C., & Gokceoglu, C., Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran, Journal of Earth System Science, 122 (2), 349–369, 2013b. Pourghasemi, H. R., & Rossi, M., Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods, Theoretical and Applied Climatology, 130 (1-2), 609-633, 2017. Quan, H. C., & Lee, B. G., GIS-based landslide susceptibility mapping using analytic hierarchy process and artificial neural network in Jeju (Korea), KSCE Journal of Civil Engineering, 16 (7), 1258-1266, 2012. Ramík, J., & Korviny, P., Inconsistency of pair-wise comparison matrix with fuzzy elements based on geometric mean, Fuzzy Sets and Systems, 161 (11), 1604-1613, 2010. Reichenbach, P., Rossi, M., Malamud, B., Mihir, M., & Guzzetti, F., A review of statistically-based landslide susceptibility models, Earth-science reviews., 2018. Remondo, J., Gonzalez, A., De Teran, JRD., Validation of landslide susceptibility maps; Examples and applications from a case study in northern Spain, Natural Hazards, 30:3:437-449, 2003. Rezaei, J., & Ortt, R., Multi-criteria supplier segmentation using a fuzzy preference relations based AHP, European Journal of Operational Research, 225 (1), 75-84, 2013. Robertson, A. H. F., & Dixon, J. E., Introduction: aspects of the geological evolution of the Eastern Mediterranean, Geological Society, London, Special Publications, 17 (1), 1-74, 1984. Roodposhti, M. S., Rahimi, S., & Beglou, M. J., PROMETHEE II and fuzzy AHP: an enhanced GIS-based landslide susceptibility mapping, Natural hazards, 73 (1), 77–95, 2014. Roodposhti, M. S., Aryal, J., Shahabi, H., & Safarrad, T., Fuzzy shannon entropy: a hybrid GIS-based landslide susceptibility mapping method, Entropy, 18 (10), 343, 2016. Ross, T. J., Logic and fuzzy systems, Fuzzy Logic with Engineering Applications, 7, 117-173, 2010. Rottensteiner, F., Trinder, J., Clode, S., Kubik, K., Using the Dempster-Shafer method for the fusion of LIDAR data and multi-spectral images for building detection, Inf Fusion 6:283-300, 2004. Rozos, D., Bathrellos, G. D., & Skillodimou, H. D., Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: a case study from the Eastern Achaia County of Peloponnesus, Greece, Environmental Earth Sciences, 63 (1), 49-63, 2011. Saaty, T.L., A scaling method for priorities in hierarchial structures, Journal of Mathematical Psychology, 15, 234-281, 1977. Saaty, T.L., The Analytic Hierarchy Process, New York, 1980. Saaty, T. L., Decision making for leaders, IEEE Transactions on Systems, Man, and Cybernetics, (3), 450-452, 1985. Saaty, T. L., Axiomatic foundation of the analytic hierarchy process, Management science, 32(7), 841-855, 1986. Saaty, T. L., How to make a decision: the analytic hierarchy process, European journal of operational research, 48 (1), 9-26, 1990. Saaty, T.L., That is not the Analytic Hierarchy Process: What the AHP is and What it is not, Journal of Multi-Criteria Decision Analysis, 6, 6, 324–335, 1997. Saaty, T. L., Fundamentals of Decision Making and Priority Theory–with the Analytic Hierarchy Process, Vol. VI. Pittsburgh: RWS Publications, 2000. Saaty, T. L., & Vargas, L. G. Models, Methods, Concepts & Applications of The Analytic Hierarchy Process. Springer; p. 3. 2001. Saaty, T. L., Decision-making with the AHP: Why is the principal eigenvector necessary. European journal of operational research, 145 (1), 85-91. 2003. Saaty, T. L., & Tran, L. T., On the invalidity of fuzzifying numerical judgments in the Analytic Hierarchy Process. Mathematical and Computer Modelling, 46 (7-8), 962-975, 2007. Saaty, T. L., The Analytic Hierarchy and Analytic Network Measurement Processes: Applications to Decisions Under Risk. European Journal of Pure and Applied Mathematics, Vol 1, No 1, p. 125, 2008. Saaty, T. L., & Vargas, L. G., The decision by the US congress on China’s trade status: a multicriteria analysis, In Models, Methods, Concepts & Applications of the Analytic Hierarchy Process, Springer, pp. 305-317, Boston, MA, 2001. Saaty, T. L., & Vargas, L. G., Models, methods, concepts & applications of the analytic hierarchy process (Vol. 175), Springer Science & Business Media, 2012. Saha, A. K., Gupta, R. P., Sarkar, I., Arora, M. K., & Csaplovics, E., An approach for GIS-based statistical landslide susceptibility zonation-with a case study in the Himalayas, Landslides, 2 (1), 61-69, 2005. Sahin, E. K., Ipbuker, C., & Kavzoglu, T., A Comparison of Feature and Expert-based Weighting Algorithms in Landslide Susceptibility Mapping. Procedia Earth and Planetary Science, 15, 462-467, 2015. Sakkas, G., Misailidis, I., Sakellariou, N., Kouskouna, V., & Kaviris, G., Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis, Natural Hazards, 84 (3), 1873-1904, 2016. Sangchini, E. K., Emami, S. N., Tahmasebipour, N., Pourghasemi, H. R., Naghibi, S. A., Arami, S. A., & Pradhan, B., Assessment and comparison of combined bivariate and AHP models with logistic regression for landslide susceptibility mapping in the Chaharmahal-e-Bakhtiari Province, Iran, Arabian Journal of Geosciences, 9 (3), 201, 2016. Schuster, R. L., & Fleming, R. W., Economic losses and fatalities due to landslides, Bulletin of the Association of Engineering Geologists, 23 (1), 11-28, 1986. Schuster, R. L., Landslides: Investigation and Mitigation. Chapter 2-Socioeconomic Significance of Landslides (No. 247), 1996. Sezer, E. A., Nefeslioglu, H. A., & Osna, T., An expert-based landslide susceptibility mapping (LSM) module developed for Netcad Architect Software, Computers & Geosciences, 98, 26-37, 2017. Shahabi, H., Khezri, S., Ahmad, B. B., & Hashim, M., Landslide susceptibility mapping at central Zab basin, Iran: a comparison between analytical hierarchy process, frequency ratio and logistic regression models, Catena, 115, 55-70, 2014. Suh, J., Choi, Y., Roh, T. D., Lee, H. J., & Park, H. D., National-scale assessment of landslide susceptibility to rank the vulnerability to failure of rock-cut slopes along expressways in Korea, Environmental Earth Sciences, 63 (3), 619-632, 2011. Süzen, M. L., & Doyuran, V., A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate, Environmental geology, 45 (5), 665-679, 2004. Şenel, M., Fethiye L8 Paftası, Maden Tetkik ve Arama Gen. Müd. Jeoloji Etüt. Dai., L8 Paftası, 1-21, 1997a. Şenel, M., 1/100.000 ölçekli Türkiye Jeoloji Haritaları, Fethiye-L9 paftası, Ankara: MTA, 1-14, 1997b. Şenel, M., Selçuk, H., Bilgin, R. Z., Şen, A. M., Durukan, E., Arbas, A., v.d., Çameli (Denizli)-Yeşilova (Burdur)-Elamlı (Antalya) ve Dolayının Jeolojisi, Ankara: MTA 1-344, 1989. Şengör, A. C., & Yilmaz, Y., Tethyan evolution of Turkey: a plate tectonic approach, Tectonophysics, 75 (3-4), 181-241, 1981. Tayali, H. A., & Timor, M., Ranking with statistical variance procedure based analytic hierarchy process, Acta Infologica, 2017. Triantaphyllou, E., & Mann, S. H., An examination of the effectiveness of multi-dimensional decision-making methods: a decision-making paradox, Decision Support Systems, 5 (3), 303-312, 1989. Turan, İ. D., Özkan, B., Türkeş, M., & Dengiz, O., Landslide susceptibility mapping for the Black Sea Region with spatial fuzzy multi-criteria decision analysis under semi-humid and humid terrestrial ecosystems, Theoretical and Applied Climatology, 1-14, 2020. Tyagi, M., Kumar, P., & Kumar, D., A hybrid approach using AHP-TOPSIS for analyzing e-SCM performance, Procedia Engineering, 97, 2195-2203, 2014. UNISDR annual report 2015, https://www.undrr.org/publication/unisdr-annual-report-2015 (Erişim tarihi: 8 Ağustos 2019). Vahidnia, M. H., Alesheikh, A. A., & Alimohammadi, A., Hospital site selection using fuzzy AHP and its derivatives. Journal of environmental management, 90 (10), 3048-3056, 2009. Vaidya, O. S., & Kumar, S., Analytic hierarchy process: An overview of applications, European Journal of operational research, 169 (1), 1-29. 2006. Van Westen, C. J., Rengers, N., & Soeters, R., Use of geomorphological information in indirect landslide susceptibility assessment, Natural hazards, 30 (3), 399-419, 2003, Varol, N. O., & Ercanoglu, M., Determination of coal rank by fuzzy logic: A case study of coal from Central Anatolia, Turkey, Energy Sources, Part A, 28(7), 643-656, 2006. Wachal, D. J., & Hudak, P. F., Mapping landslide susceptibility in Travis County, Texas, USA. GeoJournal, 51 (3), 245-253, 2000. Wally, P., Belief function representation of statistical evidence, Annals Statistics 15, 1439–1485, 1987. Wang, W. D., Chen, Y. P., & Zhong, S., Landslides susceptibility mapped with CF and logistic regression model, Journal of Central South University (Science and Technology), 40(4), 1127-1132, 2009. Wang, F., Cao, Y., & Liu, M., Risk early-Warning method for natural disasters based on integration of entropy and DEA model, Applied Mathematics, 2 (01), 23, 2011. Wang, W. D., Guo, J., Fang, L. G., & Chang, X. S., A subjective and objective integrated weighting method for landslides susceptibility mapping based on GIS, Environmental Earth Sciences, 65 (6), 1705-1714, 2012. Wang, G.Y., Xu, C.L., Li, D.Y., Generic normal cloud model, Inf. Sci. 280 (280), 1–15, 2014. Wang, L. J., Guo, M., Sawada, K., Lin, J., & Zhang, J., Landslide susceptibility mapping in Mizunami City, Japan: a comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models, Catena, 135, 271-282, 2015. Wang, X., Niu, R., Wang, Y., Landslide mechanism analysis in the three Gorges based on cloud model and formal concept analysis, Q. J. Eng. Geol. Hydrogeol., 44 (2), 249–258, 2011. Wang, Y. M., & Chin, K. S., Fuzzy analytic hierarchy process: A logarithmic fuzzy preference programming methodology, International journal of approximate reasoning, 52 (4), 541-553, 2011. Wang, Y., Fang, Z., & Hong, H., Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China, Science of the total environment, 666, 975-993, 2019. Wang, Y., Fang, Z., Wang, M., Peng, L., & Hong, H., Comparative study of landslide susceptibility mapping with different recurrent neural networks, Computers & Geosciences, 138, 104445, 2020. Wright, D.F., Bonham-Carter, G.F., VHMS favourability mapping with GISbased integration models, Chisel Lake Anderson Lake area, In: Bonham-Carter, 1996. Yager, R. R., Decision making under Dempster–Shafer uncertainties, In Classic Works of the Dempster-Shafer Theory of Belief Functions, Springer, Berlin, Heidelberg, pp. 619-632, 2008. Yalçın A., Ardeşen (Rize) Yöresinin Heyelan Duyarlılığı Açısından İncelenmesi, Doktora, Fen Bilimleri Enstitüsü, Karadeniz Teknik Üniversitesi, Trabzon, 2005. Yalcin, A., & Bulut, F., Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NE-Turkey), Natural Hazards, 41 (1), 201-226, 2007. Yalcin, A., Reis, S., Aydinoglu, A. C., & Yomralioglu, T., A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey, Catena, 85 (3), 274-287, 2011. Yaralıoğlu, K., Uygulamada Karar Destek Yöntemleri, İlkem Ofset, İzmir, 2004. Yan, F., Zhang, Q., Ye, S., & Ren, B., A novel hybrid approach for landslide susceptibility mapping integrating analytical hierarchy process and normalized frequency ratio methods with the cloud model, Geomorphology, 327, 170-187, 2019. Yılmaz, E., Analitik hiyerarşi süreci tekniği ve orman kaynakları planlamasına uygulanması örnekleri, Doğu Akdeniz Ormancılık Araştırma Enstitüsü, Doğa Dergisi, 11, 1-33, 2005. Yilmaz, I., Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey), Computers & Geosciences, 35 (6), 1125-1138, 2009. Yilmaz, I., Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine, Environmental Earth Sciences, 61 (4), 821-836, 2010. Yilmaz, I., Marschalko, M., & Bednarik, M., Comments on “Landslide susceptibility zonation study using remote sensing and GIS technology in the Ken–Betwa River Link area, India” by R. Avtar, CK Singh, G. Singh, RL Verma, S. Mukherjee, H. Sawada in Bulletin of Engineering Geology and the Environment. Bulletin of engineering geology and the environment, 71 (4), 803-805, 2012. Yilmaz, C., Topal, T., & Süzen, M. L., GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey), Environmental earth sciences, 65 (7), 2161-2178, 2012. Yu, C. S., A GP-AHP method for solving group decision-making fuzzy AHP problems, Computers & Operations Research, 29 (14), 1969-2001, 2002. Xia, W. and Wu, Z., Supplier selection with multiple criteria in volume discount environments Omega, 35, pp. 494-504, 2007. Xu, C., Dai, F., Xu, X., & Lee, Y. H., GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China, Geomorphology, 145, 70-80, 2012. Zadeh, A. A. and Izadbaksh,H.R., A Multi-Variate /Multi-Attribute Approach For Plant Layout Design, International Journal of Industrial Engineering, Vol.15,No.2, pp.143-154, 2008. Zadeh, L. A., Fuzzy sets, Inf Control 8:338–353, 1965. Zadeh, L. A., Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cyber 3:28–44, 1973. Zhang, Q.W., Zhang, Y.Z., Zhong, M., A cloud model based approach for multihierarchy fuzzy comprehensive evaluation of reservoir-induced seismic risk, J. Hydraul. Eng. 45 (1), 87–95, 2014. Zhao, H., Yao, L., Mei, G., Liu, T., & Ning, Y., A Fuzzy Comprehensive Evaluation Method Based on AHP and Entropy for a Landslide Susceptibility Map, Entropy, 19 (8), 396, 2017. Zhou, J. W., Cui, P., & Hao, M. H., Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China, Landslides, 13 (1), 39–54, 2016. Zhuang, J., Peng, J., Iqbal, J., Liu, T., Liu, N., Li, Y., & Ma, P.,nIdentification of landslide spatial distribution and susceptibility assessment in relation to topography in the Xi’an Region, Shaanxi Province, China, Frontiers of Earth Science, 9 (3), 449-462, 2015. Zhü, K., Fuzzy analytic hierarchy process: fallacy of the popular methods, Eur. J.Oper. Res. 236, 209–217, 2014.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/25505
dc.description.abstractAs with all natural disasters, studies on landslides are important steps to be prepared for landslides and increasing resilience to landslides. Different methods, such as Analytical Hierarchy Process (AHP), frequency ratio and logistic regression etc., are used in landslide susceptibility analysis, which is an important stage of landslide studies. In this study, a new, more objective and data-driven approach has been conducted by integrating fuzzy relations to AHP method in preparing landslide susceptibility mapping studies. At the first stage, the landslide inventory map of the study area, covering approximately 300 km2 within the borders of Seydikemer district of Muğla province, was updated and the current data were transferred into Geographical Information System (GIS) environment for the analyses. Totally 10 parameters maps, such as topographic elevation, slope, curvature, aspect, sediment transport capacity index, stream power index, topographical wetness index , distance to fault, distance to drainage and distance to ridges, have been prepared for the construction of the database. F-AHP (Fuzzy AHP) methods such as Fuzzy Extended Analysis Method (FEA) and Fuzzy Geometric Mean Method (FGM), are the combination of AHP and fuzzy logic methods and have been successfully used in preparing landslide susceptibility maps. Apart from these methods, in this study, the fuzzy relations were combined with AHP to prepare a data-driven model and its applicability has been investigated. Instead of using expert opinion, data-driven binary comparison values determined by fuzzy relationships were also used in preparing landslide susceptibility maps with FGM and FEA methods in order to make reliable comparisons. Additionally, a landslide susceptibility map was also prepared according to the Modified Analytical Hierarchy Process (M-AHP) method, in which the expert determined the parameter priorities at the beginning of the modeling. According to the performance evaluation of the four landslide susceptibility maps prepared, AUC values were calculated as 0.747 for FEA, 0.739 for FR-AHP, 0.738 for FGM and 0.727 for M-AHP, respectively. There are some limitations in evaluating the effects of some parameters used in landslide susceptibility analyses according to expert opinion. In the light of these data obtained, the FR-AHP method has been evaluated as a data-driven and more objective method that can be used in the preparation of landslide susceptibility maps with its applicability and high performance value.tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/restrictedAccesstr_TR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectHeyelan duyarlılığıtr_TR
dc.subjectAnalitik Hiyerarşi Süreci (AHP)tr_TR
dc.subjectBulanık mantıktr_TR
dc.subjectBulanık ilişkilertr_TR
dc.subjectHibrit AHPtr_TR
dc.subject.lcshJeoloji mühendisliğitr_TR
dc.titleFarklı Analitik Hiyerarşi Süreci Yöntemlerinin Heyelan Duyarlılığı Haritalamalarındaki Etkinliğinin Araştırılmasıtr_TR
dc.title.alternativeInvestıgatıon Of Effectıveness Of Dıfferent Analytıcal Hıerarchy Process Methods In Landslıde Susceptıbılıty Mappıng
dc.typeinfo:eu-repo/semantics/doctoralThesistr_TR
dc.description.ozetDiğer tüm doğa kaynaklı afetlerde olduğu gibi, heyelanlarla ilgili yapılan çalışmalar, heyelanlara hazırlıklı olunmasında ve heyelanlara karşı dirençliliğin arttırılmasında önemli adımlardır. Heyelan çalışmalarının önemli bir aşaması olan heyelan duyarlılık analizlerinde Analitik Hiyerarşi Süreci (AHP), frekans oranı ve lojistik regresyon vb. gibi farklı yöntemler kullanılmaktadır. Bu tez çalışmasında, heyelan duyarlılık haritalarının oluşturulmasında veriye dayalı daha nesnel yeni bir yaklaşım olarak, bulanık ilişkilerin AHP yöntemine entegre edilmesi ve uygulanmasına yönelik araştırmalar yapılmıştır. İlk olarak, analizler için Muğla iline bağlı Seydikemer ilçesi sınırları içerisinde kalan yaklaşık 300 km2’lik çalışma alanının heyelan envanter haritası güncellenmiş, güncel veriler Coğrafi Bilgi Sistemi (CBS) ortamına aktarılmıştır. Topoğrafik yükseklik, yamaç eğriselliği, yamaç eğimi, bakı, sediman taşıma kapasitesi, akış gücü indeksi, nemlilik indeksi, faya uzaklık, drenaja uzaklık ve sırtlara uzaklık olmak üzere 10 parametreye ait parametre haritaları da oluşturularak veri tabanı hazırlanmıştır. Heyelan duyarlılık haritalarının oluşturulmasında kullanılan, AHP ve bulanık mantık yöntemlerinin kombinasyonu olan F-AHP (Bulanık AHP) yöntemlerinden (Bulanık Genişletilmiş Analiz Yöntemi (FEA) ve Bulanık Geometrik Ortalama Yöntemi (FGM) farklı olarak, bu çalışmada veriye dayalı bir model oluşturmak amacıyla bulanık ilişkilerin AHP ile birlikte uygulanabilirliği araştırılmıştır. Bu amaç doğrultusunda, bulanık ilişkilerle entegre AHP yöntemine (FR-AHP) göre heyelan duyarlılığı analizleri gerçekleştirilmiştir. Uzman görüşü yerine, veriye dayalı bulanık ilişkiler ile belirlenen ikili karşılaştırma değerleri, doğru kıyas yapılması açısından FGM ve FEA yöntemleri ile heyelan duyarlılık haritası oluşturulmasında da kullanılmıştır. Ayrıca, uzmanın modellemenin başlangıç aşamasında parametre önceliklerini belirlediği Modifiye Analitik Hiyerarşi Süreci (M-AHP) yöntemine göre de heyelan duyarlılık haritası oluşturulmuştur. Oluşturulan dört heyelan duyarlılık haritasının performans değerlendirme hesaplamalarına göre, AUC değerleri FEA yöntemi için 0.747, FR-AHP yöntemi için 0.739, FGM yöntemi için 0.738 ve M-AHP yöntemi için 0.727 olarak belirlenmiştir. Elde edilen bu veriler ışığında, heyelan duyarlılık analizlerinde kullanılan bazı parametrelerin etkilerinin uzman görüşüne göre değerlendirilmesindeki kısıtlar da düşünüldüğünde FR-AHP yöntemi, uygulanabilirliği ve yüksek performans değeri ile heyelan duyarlılık haritalarının oluşturulmasında kullanılabilecek, veriye dayalı daha nesnel bir yöntem olarak değerlendirilmiştir.tr_TR
dc.contributor.departmentJeoloji Mühendisliğitr_TR
dc.embargo.termsAcik erisim
dc.embargo.lift2023-10-15T07:36:06Z
dc.fundingYoktr_TR
dc.subtypeworkingPapertr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/restrictedAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/restrictedAccess