Show simple item record

dc.contributor.advisorSümer, Bilsay
dc.contributor.authorKısa, Enes Erkan
dc.date.accessioned2020-09-17T10:37:27Z
dc.date.issued2020-07
dc.date.submitted2020-07-02
dc.identifier.citation[1] B. Piquet, “FAST (Flight Airworthiness Support Technology)”Special Edition A350XWB,” Airbus Technical Magazine, no. June, pp. 1–25, 2013. [2] M. J. Grayson, Charles E.; French, Mary; O’Brien, Traditional Archery from Six Continents. Columbia and London: University of Missouri Press, 2007. [3] D. Daniel, “Composing Composites,” Last visit on June 15, 2020. [4] “Composite Structures – Fiber Forms and Types of Fiber,” Last visit on June 15, 2020. [5] HEXCEL, “HexWeb® Honeycomb Sandwich Design Technology,” Tech. Rep. AGU 075b, 2000. [6] HEXCEL, “Typical Products for Jets,” Last visit on June 15, 2020. [7] Hexcel Composites, “HexWeb® Honeycomb Attributes and Properties,” tech. rep., HEXCEL, 1999. [8] P. Avitabile, Modal Testing: A Practitioner’s Guide. The Society for Experimental Mechanics and John Wiley & Sons Ltd, 2018. [9] V. V. Vasiliev and E. V. Morozov, Advanced Mechanics of Composite Materials. Great Britain: Elsevier Ltd, 2007. [10] SAE, Composite Materials Handbook - Vol.6 Structural Sandwich Composites, vol. 6. 2013. [11] J. Kaye, “The Transient Temperature Distribution in a Wing Flying at Supersonic Speeds,” Journal of the Aeronautical Sciences, vol. 17, no. 12, pp. 787– 807, 1950. [12] R. J. Monaghan, “Formulae and Approximations for Aerodynamic Heating Rates in high speed flight,” Tech. Rep. 360, AERONAUTICAL RESEARCH COUNCIL, LONDON, 1957. [13] E. R. van Driest, “The Problem of Aerodynamic Heating,” AERONAUTICAL ENGINEERING REVIEW, pp. 26–41, 1956. [14] J. Rohacs, I. Jankovics, I. Gal, J. Bakunowicz, G. Mingione, and A. Carozza, “Small Aircraft Infrared Radiation Measurements Supporting the Engine Airframe Aero-thermal Integration,” Periodica Polytechnica Transportation Engineering, 2018. [15] K. Daryabeigi, “Heat Transfer in Adhesively Bonded Honeycomb Core Panels,” Journal of Thermophysics and Heat Transfer, vol. 16, no. 2, 2002. [16] J. Fatemi and M. H. Lemmen, “Effective Thermal/Mechanical Properties of Honeycomb Core Panels for Hot Structure Applications,” Journal of Spacecraft and Rockets, vol. 46, no. 3, pp. 514–525, 2009. [17] J. D. D. Melo and D. W. Radford, “Time and temperature dependence of the viscoelastic properties of PEEK/IM7,” Journal of Composite Materials, vol. 38, no. 20, pp. 1815–1830, 2004. [18] J. D. D. Melo and D. W. Radford, “Time and temperature dependence of the viscoelastic properties of CFRP by dynamic mechanical analysis,” Composite Structures, vol. 70, pp. 240–253, 2005. [19] Q. Liu and Y. Zhao, “Role of Anisotropic Core in Vibration Properties of Honeycomb Sandwich Panels,” Journal of Thermoplastic Composite Materials, vol. 15, no. 1, 2002. [20] G. Aklilu, S. Adali, and G. Bright, “Temperature Effect on Mechanical Properties of Carbon, Glass and Hybrid Polymer Composite Specimens,” International Journal of Engineering Research in Africa, vol. 39, pp. 119–138, 2018. [21] K. E. Vosteen, Louis F. ; Fuller, “BEHAVIOR OF A CANTILEVER PLATE UNDER RAPID-HEATING CONDITIONS,” tech. rep., 1955. [22] R. T. L.F. Vosteen, R.R. McWhitney, “Effect of Transient Heating on Vibration Frequencies of SimpleWing Structures,” tech. rep., National Advisory Committee for Aeronautics, WASHINGTON, 1957. [23] H. L. Dryden and J. E. Duberg, “AEROELASTIC EFFECTS OF AERODYNAMIC HEATING,” ADVISORY GROUP FOR AERONAUTICAL RESEARCH AND DEVELOPMENT, 1955. [24] H. L. Runyan and N. H. Jones, “EFFECT OF AERODYNAMIC HEATING ON THE FLUTTER OF A RECTANGULAR WING AT A MACH NUMBER OF 2,” Tech. Rep. 411, NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, WASHINGTON, 1958. [25] M. W. Kehoe and V. C. Deaton, “Correlation of Analytical and Experimental Hot Structure Vibration Results,” tech. rep., NASA, 1993. [26] H. T. Snyder and M. W. Kehoe, “Determination of the Effects of Heating on Modal Characteristics of an Aluminum Plate with Application to Hypersonic Vehicles,” tech. rep., NASA Technical Memorandum, 1991. [27] Y. W. Kim, “Temperature dependent vibration analysis of functionally graded rectangular plates,” Journal of Sound and Vibration, vol. 284, no. 3-5, pp. 531– 549, 2005. [28] P. Vangipuram and N. Ganesan, “Buckling and vibration of rectangular composite viscoelastic sandwich plates under thermal loads,” Composite Structures, vol. 77, pp. 419–429, 2007. [29] P. Jeyaraj, C. Padmanabhan, and N. Ganesan, “Vibration and Acoustic Response of an Isotropic Plate in a Thermal Environment,” Journal of Vibration and Acoustics, vol. 130, no. 5, pp. 051005–1 – 051005–6, 2008. [30] P. Jeyaraj, N. Ganesan, and C. Padmanabhan, “Vibration and acoustic response of a composite plate with inherent material damping in a thermal environment,” Journal of Sound and Vibration, vol. 320, no. 1-2, pp. 322–338, 2009. [31] Y. Liu and Y. Li, “Vibration and acoustic response of rectangular sandwich plate under thermal environment,” Shock and Vibration, vol. 20, no. 5, pp. 1011–1030, 2013. [32] H. Liu, X. Li, and F. Liu, “Thermal Modal Analysis ofWing Considering Aerodynamic Heating,” in Proceedings - 6th International Symposium on Computational Intelligence and Design, ISCID 2013, vol. 2, pp. 372–375, 2013. [33] Q. Geng, H. Li, and Y. Li, “Dynamic and acoustic response of a clamped rectangular plate in thermal environments: Experiment and numerical simulation,” The Journal of the Acoustical Society of America, vol. 135, no. 5, pp. 2674– 2682, 2014. [34] S. Zhao, Y. Wang, D. Wu, Y. Pu, and L. Shang, “Experimental Research on Thermal-Vibration for Composite TrilaminatedWing Structure,” Advanced Materials Research, vol. 1061-1062, pp. 799–805, 2014. [35] X. Zhang, K. Yu, Y. Bai, and R. Zhao, “Thermal vibration characteristics of fiber-reinforced mullite sandwich structure with ceramic foams core,” Composite Structures, vol. 131, pp. 99–106, 2015. [36] H. Cheng, H. Li, W. Zhang, B. Liu, Z. Wu, and F. Kong, “Effects of Radiation Heating on Modal Characteristics of Panel Structures,” Journal of Spacecraft and Rockets, vol. 52, no. 4, pp. 1228–1235, 2015. [37] X. Li and K. Yu, “Vibration and acoustic responses of composite and sandwich panels under thermal environment,” Composite Structures, vol. 131, pp. 1040– 1049, 2015. [38] M. Du, Q. Geng, and Y. ming Li, “Vibrational and acoustic responses of a laminated plate with temperature gradient along the thickness,” Composite Structures, vol. 157, pp. 483–493, 2016. [39] G. Vio, D. Munk, and D. Verstraete, “Transient Temperature Effects on the Aerothermoelastic Response of a Simple Wing,” Aerospace, vol. 5, 2018. [40] Y. Bai, K. Yu, J. Zhao, and R. Zhao, “Experimental and Simulation Investigation of Temperature Effects on Modal Characteristics of Composite Honeycomb Structure,” Composite Structures, vol. 201, pp. 816–827, 2018. [41] T. Johnson, “History of Composites,” Last visit on June 15, 2020. [42] M. C.-Y. Niu, Composite Airframe Structures. Hong Kong Conmilit Press Ltd., 3 ed., 2010. [43] J. Reddy, Mechanics of Laminated Composite Plates and Shells Theory and Analysis. CRC Press, 2003. [44] W. S. Burton and A. K. Noor, “Assessment of continuum models for sandwich panel honeycomb cores,” Computer Methods in Applied Mechanics and Engineering, vol. 145, pp. 341–360, 1997. [45] Dynamic Testing Agency, Handbook on Modal Testing. 1993. [46] O. Døssing and Bruel & Kjaer, “Structural Testing Part 2:Modal Analysis and Simulation,” tech. rep., 1998. [47] D. J. Ewins, Modal Testing: Theory, Practice and Application. 2001. [48] PLASCORE, “PAMG-XR1 5056 Aluminum Honeycomb,” tech. rep. [49] EURO-COMPOSITES, “Mechanical Properties of ECG Honeycomb,” tech. rep. [50] HEXCEL, “HexWeb ® HRH-10 Aramid Fibre/Phenolic Honeycomb,” tech. rep., 2017. [51] J. S. Bendat and A. G. Piersol, Random Data Analysis and Measurement Procedures. 2010. [52] C. Lalanne, Mechanical Vibration and Shock Analysis: Third edition, vol. 3. 2014.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/22730
dc.description.abstractSandwich composite structures are widely preferred in modern aircraft exterior and interior structures because of their lightweight and high strength capability. Aircraft structures might be exposed to harsh thermal environments during their operational life arising from aerodynamic heating, solar radiation or engine. The exposure to thermal environment affects the mechanical properties and modal parameters of aircraft structures. In this study, the effects of core structure on dynamic characteristic of sandwich composite structure is examined under transient thermal condition by using the thermal experimental modal analysis method. As test specimens, seven sandwich composite test plates are manufactured from aluminum, nomex and glassfiber core materials, which have different core structure parameters. The transient thermal environment is applied to one face of the test plate while the structure is excited with white noise vibration excitation. The responses of the test plates are recorded during heating process, and then analyzed by MATLAB to define modal parameters of the test plates at different temperature values. The test results showed that, under transient thermal environment, as the core cell size increased, the natural frequency decrease rate of the test plate increases and the damping of structure became more sensitive to temperature. The first natural frequency of the hexagonal and the OX-Core affected in same rate, but in the end of the test period, the second mode of the OX-Core was equal to initial value while the third mode decreased more than the third mode of hexagonal core. The damping ratio of the hexagonal core was more sensitive to thermal environment than the Ox-Core damping ratio. The study on the effect of core thickness showed that, the dynamic characteristics of sandwich structure became more sensitive to thermal environment as the core thickness increased. The change rate of natural frequencies and damping ratios were the highest for the thickest core. The results also showed that, each core material type affected from thermal environment differently and the dynamic characteristics of the test plate with Nomex core was the most sensitive while the glassfiber core affected less than the other core materials when heated with 3 °C/s heating rate. As the heating rate decreases, the change rates in natural frequency decrease for Nomex while increase for glassfiber and aluminum core. The change in glassfiber core is lower than other cores at each heating rate. The FRF responses of each test plates decreased under the effect of transient thermal environment.tr_TR
dc.language.isoentr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectVibration analysistr_TR
dc.subjectSandwich composite structuretr_TR
dc.subjectHoneycomb coretr_TR
dc.subjectExperimental modal analysistr_TR
dc.subjectThermal modal analysistr_TR
dc.subject.lcshMakina mühendisliğitr_TR
dc.titleTransıent Response Of Heated Sandwıch Composıte Structures Wıth Dıfferent Core Materıalstr_en
dc.title.alternativeGeçici Rejimde Uygulanan Isıtmanın Farklı Çekirdek Malzemesine Sahip Sandviç Kompozit Yapıların Dinamik Karakterine Etkisitr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetSandviç kompozit yapılar, düşük ağırlık ve yüksek mukavemet kabiliyeti nedeniyle modern hava taşıtlarının iç ve dış yapılarında sıklıkla tercih edilmektedir. Hava taşıtları, operasyonel koşullar altında, aerodinamik ısınma, solar ışıma yada motor kaynaklı zorlayıcı termal koşullara maruz kalabilmektedir. Fakat termal koşullara maruz kalan yapıların mekanik özelliklerini ve modal parameterlerini etkileyebilmektedir. Bu çalışmada, çekirdek yapısının termal koşullar altında sanviç kompozit yapıların dinamik karakterine etkisi deneysel termal modal analiz yöntemi ile incelenmiştir. Bu amaçla, aluminyum, Nomex ve cam lifi malzemeleri kullanaraak farklı çekirdek yapılarına sahip yedi adet sandviç kompozit plaka üretilmiştir. Hava taşıtlarının yaşaması muhtemel bir geçici rejimli termal koşul, test plakalarının bir yüzüne uygulanırken, plakalar beyaz gürültü ile tahrik edilmiştir. Uygulanan tahriğe yapıların tepkileri kaydedilmiştir ve MATLAB paket programı kullanılarak kaydedilen veri çözümlenerek, yapının modal parametreleri farklı sıcaklıklarda tespit edilmiştir. Çalışma sonuçlarında, geçici rejimli termal koşul etkisiyle birlikte, çekirdek hücre boyutunun artmasıyla doğal frekans düşüş oranınının arttığı ve yapının sönümleme katsayısının sıcaklık değişimine daha hassas olduğu gözlemlenmiştir. Altıgen ve OX-Core hücre şekline sahip çekirdek yapıların ilk doğal frekasnının aynı oranda etkilendiği ama test sonunda OX-Core hücre yapısına sahip yapının üçüncü doğal frekansı daha çok azalırken, ikinci doğal frekans değeri değişiklik göstermemiştir. Altıgen hücre yapısının sönümleme katsayısı, termal koşullar altında, OX-Core yapısının sönümleme oranından daha hassastır. Çekirdek kalınlığının dinamik karaktere etkisinin gösterildiği çalışmada, çakirdek kalınlığı arttıkça yapının dinamik karakterlerinin daha çok etkilendiği, doğal frekans ve sönümleme oranındaki değişikliğin en kalın çekirdek yapısına sahip plakada en fazla olduğu gözlenmiştir. Çalışma ayrıca çekirdek malzemesinin, termal koşullar altında yapının dinamik karakterine farklı oranlarda etkilediğini, 3 °C/s ısıtma oranında ısıtıldığında, nomex çekirdek malzemesinin dinamik karakter değişim oranlarının en fazla cam yünü çekirdek malzemesinin dinamik karakter değişim oranının da en az olduğu göstermiştir. Isıtma oranı düşürüldükçe Nomex malzeme dinamik karakter değişim oranlarının azaldığı, diğer malzemeler için ise arttığı ve tüm ısıtma oranlarında en az etkilenen çekirdek malzemesinin cam yünü olduğu gösterilmiştir. Her test plakasının frekans tepki fonksiyon büyüklüğünün, geçici rejimli ısıtma etkisi ile birlikte azaldığı gösterilmiştir.tr_TR
dc.contributor.departmentMakine Mühendisliğitr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2020-09-17T10:37:27Z
dc.fundingYoktr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record