Basit öğe kaydını göster

dc.contributor.advisorTemuçin, Çağrı Mesut
dc.contributor.advisorYıldız Sarıkaya, Fatma Gökçem
dc.contributor.authorKarimov, Ruhid
dc.date.accessioned2020-01-17T07:51:06Z
dc.date.issued2019
dc.date.submitted2019-08-20
dc.identifier.citation1. Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain. 2000;123 Pt 3:572-84. 2. Classen J, Liepert J, Wise SP, Hallett M, Cohen LG. Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol. 1998;79(2):1117-23. 3. Ziemann U, Siebner HR. Modifying motor learning through gating and homeostatic metaplasticity. Brain Stimul. 2008;1(1):60-6. 4. Yarossi M, Adamovich S, Tunik E. Sensorimotor cortex reorganization in subacute and chronic stroke: A neuronavigated TMS study. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:5788-91. 5. Babajani-Feremi A, Narayana S, Rezaie R, Choudhri AF, Fulton SP, Boop FA, et al. Language mapping using high gamma electrocorticography, fMRI, and TMS versus electrocortical stimulation. Clin Neurophysiol. 2016;127(3):1822-36. 6. Saleh M, Takahashi K, Amit Y, Hatsopoulos NG. Encoding of coordinated grasp trajectories in primary motor cortex. J Neurosci. 2010;30(50):17079-90. 7. Abbruzzese G, Berardelli A. Sensorimotor integration in movement disorders. Mov Disord. 2003;18(3):231-40. 8. Shaikhouni A, Donoghue JP, Hochberg LR. Somatosensory responses in a human motor cortex. J Neurophysiol. 2013;109(8):2192-204. 9. Anastakis DJ, Chen R, Davis KD, Mikulis D. Cortical plasticity following upper extremity injury and reconstruction. Clin Plast Surg. 2005;32(4):617-34, viii. 10. Dubbioso R, Raffin E, Karabanov A, Thielscher A, Siebner HR. Centre-surround organization of fast sensorimotor integration in human motor hand area. Neuroimage. 2017;158:37-47. 11. Zanette G, Manganotti P, Fiaschi A, Tamburin S. Modulation of motor cortex excitability after upper limb immobilization. Clin Neurophysiol. 2004;115(6):1264-75. 12. Kleim JA, Barbay S, Nudo RJ. Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol. 1998;80(6):3321-5. 13. Rossini PM, Rossi S. Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology. 2007;68(7):484-8. 14. Burke D, Bartley K, Woodforth IJ, Yakoubi A, Stephen JP. The effects of a volatile anaesthetic on the excitability of human corticospinal axons. Brain. 2000;123 ( Pt 5):992-1000. 15. Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;2(3):145-56. 16. Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC. Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci. 1997;17(9):3178-84. 17. Deng Z-D, Lisanby SH, Peterchev AV. Coil design considerations for deep transcranial magnetic stimulation. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2014;125(6):1202-12. 18. Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008-39. 19. Rossini PM, Caramia MD, Iani C, Desiato MT, Sciarretta G, Bernardi G. Magnetic transcranial stimulation in healthy humans: influence on the behavior of upper limb motor units. Brain Res. 1995;676(2):314-24. 20. Hada Y, Abo M, Kaminaga T, Mikami M. Detection of cerebral blood flow changes during repetitive transcranial magnetic stimulation by recording hemoglobin in the brain cortex, just beneath the stimulation coil, with near-infrared spectroscopy. Neuroimage. 2006;32(3):1226-30. 21. Ziemann U. Pharmacology of TMS. Suppl Clin Neurophysiol. 2003;56:226-31. 22. Ziemann U. TMS and drugs. Clin Neurophysiol. 2004;115(8):1717-29. 23. Rothwell JC. Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods. 1997;74(2):113-22. 24. Rothwell JC, Hallett M, Berardelli A, Eisen A, Rossini P, Paulus W. Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:97-103. 25. Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;91(2):79-92. 26. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126(6):1071-107. 27. Tarapore PE, Tate MC, Findlay AM, Honma SM, Mizuiri D, Berger MS, et al. Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg. 2012;117(2):354-62. 28. Krieg SM, Lioumis P, Makela JP, Wilenius J, Karhu J, Hannula H, et al. Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers; workshop report. Acta Neurochir (Wien). 2017;159(7):1187-95. 29. Maki H, Ilmoniemi RJ. EEG oscillations and magnetically evoked motor potentials reflect motor system excitability in overlapping neuronal populations. Clin Neurophysiol. 2010;121(4):492-501. 30. Weiss C, Nettekoven C, Rehme AK, Neuschmelting V, Eisenbeis A, Goldbrunner R, et al. Mapping the hand, foot and face representations in the primary motor cortex - retest reliability of neuronavigated TMS versus functional MRI. Neuroimage. 2013;66:531-42. 31. Rossi S, Rossini PM. TMS in cognitive plasticity and the potential for rehabilitation. Trends Cogn Sci. 2004;8(6):273-9. 32. van de Ruit M, Perenboom MJ, Grey MJ. TMS brain mapping in less than two minutes. Brain Stimul. 2015;8(2):231-9. 33. Mead G, Bernhardt J, Kwakkel G. Stroke: physical fitness, exercise, and fatigue. Stroke Res Treat. 2012;2012:632531. 34. Classen J, Knorr U, Werhahn KJ, Schlaug G, Kunesch E, Cohen LG, et al. Multimodal output mapping of human central motor representation on different spatial scales. J Physiol. 1998;512 ( Pt 1):163-79. 35. Wassermann EM, McShane LM, Hallett M, Cohen LG. Noninvasive mapping of muscle representations in human motor cortex. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section. 1992;85(1):1-8. 36. Jonker ZD, van der Vliet R, Hauwert CM, Gaiser C, Tulen JHM, van der Geest JN, et al. TMS motor mapping: Comparing the absolute reliability of digital reconstruction methods to the golden standard. Brain Stimul. 2019;12(2):309-13. 37. Raffin E, Siebner HR. Use-Dependent Plasticity in Human Primary Motor Hand Area: Synergistic Interplay Between Training and Immobilization. Cereb Cortex. 2019;29(1):356-71. 38. Lefaucheur JP, Picht T. The value of preoperative functional cortical mapping using navigated TMS. Neurophysiol Clin. 2016;46(2):125-33. 39. Vitikainen AM, Salli E, Lioumis P, Makela JP, Metsahonkala L. Applicability of nTMS in locating the motor cortical representation areas in patients with epilepsy. Acta Neurochir (Wien). 2013;155(3):507-18. 40. Ludemann-Podubecka J, Nowak DA. Mapping cortical hand motor representation using TMS: A method to assess brain plasticity and a surrogate marker for recovery of function after stroke? Neurosci Biobehav Rev. 2016;69:239-51. 41. Seynaeve L, Haeck T, Gramer M, Maes F, De Vleeschouwer S, Van Paesschen W. Optimized preoperative motor cortex mapping in brain tumors using advanced processing of transcranial magnetic stimulation data. Neuroimage Clin. 2019;21:101657. 42. Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero A, Profice P, Insola A, et al. Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol. 2000;523 Pt 2:503-13. 43. Di Lazzaro V, Profice P, Ranieri F, Capone F, Dileone M, Oliviero A, et al. I-wave origin and modulation. Brain Stimul. 2012;5(4):512-25. 44. Bailey AZ, Mi YP, Nelson AJ. Short-latency afferent inhibition in chronic spinal cord injury. Transl Neurosci. 2015;6(1):235-43. 45. Fischer M, Orth M. Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMS. Brain Stimul. 2011;4(4):202-9. 46. Classen J, Steinfelder B, Liepert J, Stefan K, Celnik P, Cohen LG, et al. Cutaneomotor integration in humans is somatotopically organized at various levels of the nervous system and is task dependent. Exp Brain Res. 2000;130(1):48-59. 47. Bailey AZ, Asmussen MJ, Nelson AJ. Short-latency afferent inhibition determined by the sensory afferent volley. J Neurophysiol. 2016;116(2):637-44. 48. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, et al. Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2004;75(4):555-9. 49. Nardone R, Florio I, Lochner P, Tezzon F. Cholinergic cortical circuits in Parkinson's disease and in progressive supranuclear palsy: a transcranial magnetic stimulation study. Exp Brain Res. 2005;163(1):128-31. 50. Sailer A, Molnar GF, Paradiso G, Gunraj CA, Lang AE, Chen R. Short and long latency afferent inhibition in Parkinson's disease. Brain. 2003;126(Pt 8):1883-94. 51. Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Di Giovanni S, Zito G, et al. Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res. 2000;135(4):455-61. 52. Di Lazzaro V, Pilato F, Dileone M, Tonali PA, Ziemann U. Dissociated effects of diazepam and lorazepam on short-latency afferent inhibition. J Physiol. 2005;569(Pt 1):315-23. 53. Neville H, Bavelier D. Human brain plasticity: evidence from sensory deprivation and altered language experience. Prog Brain Res. 2002;138:177-88. 54. Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMSCG. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008-39. 55. Abbruzzese G, Marchese R, Buccolieri A, Gasparetto B, Trompetto C. Abnormalities of sensorimotor integration in focal dystonia: a transcranial magnetic stimulation study. Brain. 2001;124(Pt 3):537-45. 56. Quartarone A, Bagnato S, Rizzo V, Siebner HR, Dattola V, Scalfari A, et al. Abnormal associative plasticity of the human motor cortex in writer's cramp. Brain. 2003;126(Pt 12):2586-96. 57. Onishi H. Cortical excitability following passive movement. Phys Ther Res. 2018;21(2):23-32. 58. Sasaki R, Tsuiki S, Miyaguchi S, Kojima S, Saito K, Inukai Y, et al. Somatosensory Inputs Induced by Passive Movement Facilitate Primary Motor Cortex Excitability Depending on the Interstimulus Interval, Movement Velocity, and Joint Angle. Neuroscience. 2018;386:194-204. 59. Miyaguchi S, Onishi H, Kojima S, Sugawara K, Tsubaki A, Kirimoto H, et al. Corticomotor excitability induced by anodal transcranial direct current stimulation with and without non-exhaustive movement. Brain Res. 2013;1529:83-91. 60. Miyaguchi S, Kojima S, Kirimoto H, Tamaki H, Onishi H. Do Differences in Levels, Types, and Duration of Muscle Contraction Have an Effect on the Degree of Post-exercise Depression? Front Hum Neurosci. 2016;10:159. 61. Teo WP, Rodrigues JP, Mastaglia FL, Thickbroom GW. Modulation of corticomotor excitability after maximal or sustainable-rate repetitive finger movement is impaired in Parkinson's disease and is reversed by levodopa. Clin Neurophysiol. 2014;125(3):562-8.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/21766
dc.description.abstractSensory-motor integration involves processes in which sensory input is integrated by the central nervous system for the execution of the motor program. Understanding the underlying mechanisms of sensory-motor cortical plasticity has fundamental neurobiological importance and is a requirement for the development of strategies for recovery after brain injury as well as physiological processes such as motor learning. In order to understand the nature of sensory-motor integration and the plastic changes we aimed the development of non-invasive excercise model called “sensory-motor illusion” exercise and to evaluate the validity and effectiveness of this model using Transcranial Magnetic Stimulation (TMS). For this purpose, while the elbow joint movement and biceps muscle length were kept constant during a motor task performed in the biceps muscle, a passive movement was created with a mechanism formed in the metacarpapharyngeal joint of the 2nd finger. In this way, it is aimed to create a transient change in the interconnection of biceps muscle and 1st dorsal interosseous (IDI) muscle cortical sensory-motor representation areas. The targeted change in cortical plasticity was evaluated in 10 healthy individuals before and after exercise by TMS-performed cortical mapping, resting motor threshold (IME), over-threshold stimulation and short latency afferent inhibition (SAI) studies. As a result, it was found that the decrease in biceps muscle IME caused by activation of IDI muscle increased significantly after exercise (p = 0.001). Cortical excitability studies showed that the model developed in this study creates transient plasticity changes in sensory-motor integration. With the validity of the model, new findings that can be used in the treatment processes using adaptive mechanisms for healthy reconstruction of sensory-motor integration in pathological conditions involving stroke, nerve damage, dystonia and maladaptive processes have been obtained.tr_TR
dc.language.isoturtr_TR
dc.publisherNörolojik Bilimler ve Psikiyatri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectTMStr_TR
dc.subjectDuyusal-Motor Entegrasyontr_TR
dc.subjectkortikal motor haritalamatr_TR
dc.titlePasif Egzersiz ile Gerçekleşen Duyusal-Motor Entegrasyon ve Kortikal Plastisite Değişiklikleritr_TR
dc.typeinfo:eu-repo/semantics/doctoralThesistr_TR
dc.description.ozetDuyusal-motor entegrasyon, motor programının yürütülmesinde duyusal girdinin santral sinir sistemi tarafından entegre edildiği süreçleri kapsar. Duyusal-motor korteks plastisitesinin altında yatan mekanizmaların anlaşılması temel nörobiyolojik bir öneme sahip olup, motor öğrenme gibi fizyolojik süreçlerin yanı sıra beyin hasarı sonrası düzelmeyi sağlamaya yönelik stratejilerin geliştirilmesi için de bir gerekliliktir. Çalışmamızda duyusal-motor entegrasyonun ve gerçekleşen plastik değişikliklerin doğasının anlaşılması amacı ile “duyusal-motor illüzyon egzersizi” olarak isimlendirilen non-invaziv bir modelin geliştirilmesi, modelin geçerliliğinin ve etkinliğinin TMS kullanarak değerlendirilmesi hedeflenmiştir. Bu amaçla biceps kasında gerçekleştirilen motor bir görev sırasında dirsek eklemi hareketi ve biceps kas uzunluğu sabit tutulurken, oluşturulan bir düzenek ile 2. parmak metakarpafarengial ekleminde pasif bir hareket oluşturulmuştur. Bu şekilde biceps kası ile 1. dorsal interosseous (IDI) kaslarının kortikal duyusal-motor temsil alanlarındaki bağlantısallığında geçici bir değişiklik oluşturulması hedeflenmiştir. Kortikal plastisitede hedeflenen değişiklik egzersiz öncesi ve sonrası 10 sağlıklı bireyde, TMS ile gerçekleştirilen kortikal haritalama, istirahat motor eşik (İME), eşik üstü uyarı ve kısa latanslı afferent inhibisyon (SAI) çalışmaları ile değerlendirilmiştir. Çalışma sonucunda, biceps kası İME’de IDI kasının aktivasyonu ile ortaya çıkan düşüşün egzersiz sonrası egzersiz öncesine göre anlamlı derecede arttığı saptanmıştır (p=0,001). Çalışma ile geliştirilen modelin duyusal-motor entegrasyonda geçici plastisite değişiklikler oluşturduğu kortikal uyarılabilirlik çalışmaları ile gösterilebilmiştir. Modelin geçerliliğinin gösterilmesi ile inme, sinir hasarı, distoni gibi maladaptif süreçlerin yer aldığı patolojik durumlarda, duyusal-motor entegrasyonun sağlıklı bir şekilde yeniden oluşturulması amaçlı adaptif mekanizmaların kullanıldığı tedavi süreçlerinde kullanılabilecek yeni bulgular elde edilmiştir.tr_TR
dc.contributor.departmentNörolojitr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2020-01-17T07:51:07Z
dc.fundingYoktr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess