dc.contributor.author | Orhan, Nil | |
dc.contributor.author | Tuetuencue, Derya Keskin | |
dc.contributor.author | Tribak, Rachid | |
dc.date.accessioned | 2019-12-16T09:40:21Z | |
dc.date.available | 2019-12-16T09:40:21Z | |
dc.date.issued | 2007 | |
dc.identifier.issn | 1027-5487 | |
dc.identifier.uri | https://doi.org/10.11650/twjm/1500404708 | |
dc.identifier.uri | http://hdl.handle.net/11655/19839 | |
dc.description.abstract | Let R be any ring and let M be any right R-module. M is called hollow-lifting if every submodule N of M such that M/N is hollow has a coessential submodule that is a direct summand of M. We prove that every amply supplemented hollow-lifting module with finite hollow dimension is lifting. It is also shown that a direct sum of two relatively projective hollow-lifting modules is hollow-lifting. | |
dc.language.iso | en | |
dc.publisher | Mathematical Soc Rep China | |
dc.relation.isversionof | 10.11650/twjm/1500404708 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Mathematics | |
dc.title | On Hollow-Lifting Modules | |
dc.type | info:eu-repo/semantics/article | |
dc.relation.journal | Taiwanese Journal Of Mathematics | |
dc.contributor.department | Matematik | |
dc.identifier.volume | 11 | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 545 | |
dc.identifier.endpage | 568 | |
dc.description.index | WoS | |
dc.description.index | Scopus | |