dc.contributor.author | Calci, T. P. | |
dc.contributor.author | Halicioglu, S. | |
dc.contributor.author | Harmanci, A. | |
dc.date.accessioned | 2019-12-16T09:40:01Z | |
dc.date.available | 2019-12-16T09:40:01Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 1787-2405 | |
dc.identifier.uri | https://doi.org/10.18514/MMN.2017.1508 | |
dc.identifier.uri | http://hdl.handle.net/11655/19785 | |
dc.description.abstract | In this paper we introduce a class of quasipolar rings which is a generalization of J-quasipolar rings. Let R be a ring with identity. An element a is an element of R is called delta-quasipolar if there exists p(2) = p is an element of comm(2)(a) such that a + p is contained in delta(R), and the ring R is called delta-quasipolar if every element of R is delta-quasipolar. We use delta-quasipolar rings to extend some results of J-quasipolar rings. Then some of the main results of J-quasipolar rings are special cases of our results for this general setting. We give many characterizations and investigate general properties of delta-quasipolar rings. | |
dc.language.iso | en | |
dc.publisher | Univ Miskolc Inst Math | |
dc.relation.isversionof | 10.18514/MMN.2017.1508 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Mathematics | |
dc.title | A Generalization of J - Quasipolar Rings | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.relation.journal | Miskolc Mathematical Notes | |
dc.contributor.department | Matematik | |
dc.identifier.volume | 18 | |
dc.identifier.issue | 1 | |
dc.identifier.startpage | 155 | |
dc.identifier.endpage | 165 | |
dc.description.index | WoS | |