Basit öğe kaydını göster

dc.contributor.authorCalci, T. P.
dc.contributor.authorHalicioglu, S.
dc.contributor.authorHarmanci, A.
dc.date.accessioned2019-12-16T09:40:01Z
dc.date.available2019-12-16T09:40:01Z
dc.date.issued2017
dc.identifier.issn1787-2405
dc.identifier.urihttps://doi.org/10.18514/MMN.2017.1508
dc.identifier.urihttp://hdl.handle.net/11655/19785
dc.description.abstractIn this paper we introduce a class of quasipolar rings which is a generalization of J-quasipolar rings. Let R be a ring with identity. An element a is an element of R is called delta-quasipolar if there exists p(2) = p is an element of comm(2)(a) such that a + p is contained in delta(R), and the ring R is called delta-quasipolar if every element of R is delta-quasipolar. We use delta-quasipolar rings to extend some results of J-quasipolar rings. Then some of the main results of J-quasipolar rings are special cases of our results for this general setting. We give many characterizations and investigate general properties of delta-quasipolar rings.
dc.language.isoen
dc.publisherUniv Miskolc Inst Math
dc.relation.isversionof10.18514/MMN.2017.1508
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMathematics
dc.titleA Generalization of J - Quasipolar Rings
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.relation.journalMiskolc Mathematical Notes
dc.contributor.departmentMatematik
dc.identifier.volume18
dc.identifier.issue1
dc.identifier.startpage155
dc.identifier.endpage165
dc.description.indexWoS


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster