Basit öğe kaydını göster

dc.contributor.authorÖzcan, A. C.
dc.contributor.authorHarmancı, A.
dc.contributor.authorSmith, P. F.
dc.date.accessioned2019-12-16T09:40:00Z
dc.date.available2019-12-16T09:40:00Z
dc.date.issued2006
dc.identifier.issn0017-0895
dc.identifier.urihttps://doi.org/10.1017/S0017089506003260
dc.identifier.urihttp://hdl.handle.net/11655/19781
dc.description.abstractLet R be a ring. An R-module M is called a (weak) duo module provided every (direct summand) submodule of M is fully invariant. It is proved that if R is a commutative domain with field of fractions K then a torsion-free uniform R-module is a duo module if and only if every element k in K such that kM is contained in M belongs to R. Moreover every non-zero finitely generated torsion-free duo R-module is uniform. In addition, if R is a Dedekind domain then a torsion R-module is a duo module if and only if it is a weak duo module and this occurs precisely when the P-primary component of M is uniform for every maximal ideal P of R.
dc.language.isoen
dc.publisherCambridge Univ Press
dc.relation.isversionof10.1017/S0017089506003260
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMathematics
dc.titleDuo Modules
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.relation.journalGlasgow Mathematical Journal
dc.contributor.departmentMatematik
dc.identifier.volume48
dc.identifier.startpage533
dc.identifier.endpage545
dc.description.indexWoS
dc.description.indexScopus


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster