dc.contributor.author | Özcan, A. C. | |
dc.contributor.author | Harmancı, A. | |
dc.contributor.author | Smith, P. F. | |
dc.date.accessioned | 2019-12-16T09:40:00Z | |
dc.date.available | 2019-12-16T09:40:00Z | |
dc.date.issued | 2006 | |
dc.identifier.issn | 0017-0895 | |
dc.identifier.uri | https://doi.org/10.1017/S0017089506003260 | |
dc.identifier.uri | http://hdl.handle.net/11655/19781 | |
dc.description.abstract | Let R be a ring. An R-module M is called a (weak) duo module provided every (direct summand) submodule of M is fully invariant. It is proved that if R is a commutative domain with field of fractions K then a torsion-free uniform R-module is a duo module if and only if every element k in K such that kM is contained in M belongs to R. Moreover every non-zero finitely generated torsion-free duo R-module is uniform. In addition, if R is a Dedekind domain then a torsion R-module is a duo module if and only if it is a weak duo module and this occurs precisely when the P-primary component of M is uniform for every maximal ideal P of R. | |
dc.language.iso | en | |
dc.publisher | Cambridge Univ Press | |
dc.relation.isversionof | 10.1017/S0017089506003260 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Mathematics | |
dc.title | Duo Modules | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.relation.journal | Glasgow Mathematical Journal | |
dc.contributor.department | Matematik | |
dc.identifier.volume | 48 | |
dc.identifier.startpage | 533 | |
dc.identifier.endpage | 545 | |
dc.description.index | WoS | |
dc.description.index | Scopus | |