Basit öğe kaydını göster

dc.contributor.authorTurkyilmazoglu, M.
dc.date.accessioned2019-12-16T09:39:26Z
dc.date.available2019-12-16T09:39:26Z
dc.date.issued2011
dc.identifier.issn0895-7177
dc.identifier.urihttps://doi.org/10.1016/j.mcm.2011.01.022
dc.identifier.urihttp://hdl.handle.net/11655/19721
dc.description.abstractThe homotopy method for the solution of nonlinear equations is revisited in the present study. An analytic method is proposed for determining the valid region of convergence of control parameter of the homotopy series, as an alternative to the classical way of adjusting the region through graphical analysis. Illustrative examples are presented to exhibit a vivid comparison between the homotopy perturbation method (HPM) and the homotopy analysis method (HAM). For special choices of the initial guesses it is shown that the convergence-control parameter does not cover the HPM. In such cases, blindly using the HPM yields a non convergence series to the sought solution. In addition to this, HPM is shown not always to generate a continuous family of solutions in terms of the homotopy parameter. By the convergence-control parameter this can however be prevented to occur in the HAM. (C) 2011 Elsevier Ltd. All rights reserved.
dc.language.isoen
dc.publisherPergamon-Elsevier Science Ltd
dc.relation.isversionof10.1016/j.mcm.2011.01.022
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectComputer Science
dc.subjectMathematics
dc.titleSome Issues On Hpm And Ham Methods: A Convergence Scheme
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.relation.journalMathematical And Computer Modelling
dc.contributor.departmentMatematik
dc.identifier.volume53
dc.identifier.issue10-Sep
dc.identifier.startpage1929
dc.identifier.endpage1936
dc.description.indexWoS
dc.description.indexScopus


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster