Classifying Fonts And Calligraphy Styles Using Complex Wavelet Transform

Tarih
2015Yazar
Bozkurt, Alican
Duygulu, Pinar
Cetin, A. Enis
- Citations
- CrossRef - Citation Indexes: 3
- Scopus - Citation Indexes: 5
- Captures
- Mendeley - Readers: 33
publications
0
supporting
0
mentioning
0
contrasting
0
0
0
0
0
Citing PublicationsSupportingMentioningContrasting
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Üst veri
Tüm öğe kaydını gösterÖzet
Recognizing fonts has become an important task in document analysis, due to the increasing number of available digital documents in different fonts and emphases. A generic font recognition system independent of language, script and content is desirable for processing various types of documents. At the same time, categorizing calligraphy styles in handwritten manuscripts is important for paleographic analysis, but has not been studied sufficiently in the literature. We address the font recognition problem as analysis and categorization of textures. We extract features using complex wavelet transform and use support vector machines for classification. Extensive experimental evaluations on different datasets in four languages and comparisons with state-of-the-art studies show that our proposed method achieves higher recognition accuracy while being computationally simpler. Furthermore, on a new dataset generated from Ottoman manuscripts, we show that the proposed method can also be used for categorizing Ottoman calligraphy with high accuracy.