Show simple item record

dc.contributor.authorCan, Burcu
dc.contributor.authorManandhar, Suresh
dc.date.accessioned2019-12-13T06:51:42Z
dc.date.available2019-12-13T06:51:42Z
dc.date.issued2018
dc.identifier.issn0891-2017
dc.identifier.urihttps://doi.org/10.1162/COLI_a_00318
dc.identifier.urihttp://hdl.handle.net/11655/18660
dc.description.abstractThis article presents a probabilistic hierarchical clustering model for morphological segmentation. In contrast to existing approaches to morphology learning, our method allows learning hierarchical organization of word morphology as a collection of tree structured paradigms. The model is fully unsupervised and based on the hierarchical Dirichlet process. Tree hierarchies are learned along with the corresponding morphological paradigms simultaneously. Our model is evaluated on Morpho Challenge and shows competitive performance when compared to state-of-the-art unsupervised morphological segmentation systems. Although we apply this model for morphological segmentation, the model itself can also be used for hierarchical clustering of other types of data.
dc.language.isoen
dc.publisherMit Press
dc.relation.isversionof10.1162/COLI_a_00318
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectComputer Science
dc.subjectLinguistics
dc.titleTree Structured Dirichlet Processes For Hierarchical Morphological Segmentation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.relation.journalComputational Linguistics
dc.contributor.departmentBilgisayar Mühendisliği
dc.identifier.volume44
dc.identifier.issue2
dc.identifier.startpage349
dc.identifier.endpage374
dc.description.indexWoS
dc.description.indexScopus


Files in this item

This item appears in the following Collection(s)

Show simple item record