Basit öğe kaydını göster

dc.contributor.authorDokeroglu, Tansel
dc.contributor.authorSert, Seyyit Alper
dc.contributor.authorCinar, Muhammet Serkan
dc.date.accessioned2019-12-13T06:51:31Z
dc.date.available2019-12-13T06:51:31Z
dc.date.issued2014
dc.identifier.issn2356-6140
dc.identifier.urihttps://doi.org/10.1155/2014/435254
dc.identifier.urihttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032693/
dc.identifier.urihttp://hdl.handle.net/11655/18639
dc.description.abstractWith the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose.
dc.relation.isversionof10.1155/2014/435254
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvolutionary Multiobjective Query Workload Optimization Of Cloud Data Warehouses
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.relation.journalThe Scientific World Journal
dc.contributor.departmentBilgisayar Mühendisliği
dc.identifier.volume2014
dc.description.indexPubMed
dc.description.indexWoS
dc.description.indexScopus


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster