dc.contributor.advisor | Uğurlu, Ayşenur | |
dc.contributor.author | Carmona Arrieta, Luis Alfredo | |
dc.date.accessioned | 2019-11-26T13:39:11Z | |
dc.date.issued | 2019-09-05 | |
dc.date.submitted | 2019-08-05 | |
dc.identifier.citation | Carmona Arrieta, L. A. (2019). Pretreatment of sugar beet bagasse for enhance biogas production (Unpublished master's thesis). Hacettepe Üniversitesi, Ankara, Turkey. | tr_TR |
dc.identifier.uri | http://hdl.handle.net/11655/11943 | |
dc.description.abstract | World energy consumption is increasing depending on the rise in demand which
threatens humanity with a soon shortage of fossil fuels. Therefore, the research is
focused on alternative sources of energy such as the renewable ones. Biogas production
is regarded as an alternative source of energy from various kinds‟ biomass feedstock or
wastes which can also have negative effects on the environment if not properly
disposed. Gradually, biogas has been gaining a new pace in the market due to the
efficiency and the lack of technology modification, when compared with the other
renewable energy sources.
The problems encountered in anaerobic digestion degradation are caused by the
complex and tough structure of lignocellulosic biomass. Its efficient disruption is
required to increase the hydrolysis rate and biogas production. One way of enhancing
biogas production from lignocellulosic biomass is implementing pretreatments to the
substrate before the anaerobic digestion process for increasing the biodegradability. The
physical, chemical and biological pretreatments are widely studied to improve the biomethane yield. The biomethane production can be enhanced by 25% and >100%
with various pretreatment applications. Combinations of pretreatments are also applied.
The selection of pretreatment method is always related to application procedure, time,
energy and chemical costs. Besides, the effectiveness of chemical reagents, possible
corrosion or degradation is also considered due to the concentrations used.
In this study, the effects of physical and chemical pretreatments, and their combination
were investigated on the degradation of lignocellulosic structure of sugar beet pulp, and
(ii) the effect of pretreatment methods on the methane production by performing batch
Biochemical Methane Production tests (BMP).
By considering the previous facts in the present investigation, raw sugar beet (RSB) and
exhausted sugar beet (ESB) were studied. Sugar beet pulp has 22-30% cellulose, 22-30
hemicellulose, 24-32% pectin and 1-3% lignin content. Acid pretreatment with dilute
H2SO4 and alkaline pretreatment with dilute NaOH were used as the chemical
pretreatment methods. The physical pretreatments were done under microwave and
autoclave.
Under the scope of the physical pretreatment the specific methane production potential
(SMP) resulted in 328.90 mL CH4/gVSfeed, which increased by 40% with microwave
radiation (300 Watts) for 2 minutes. The alkaline pretreatment with 2% NaOH (at 25°C,
48 hours) achieved 286.96 mL CH4/gVSfeed, which represents an increase by 45%.
Furthermore, physicochemical pretreatment elevated the biomethane production
potential by 65% when the sugar beet was exposed to 2% acid at 120°C during 30
minutes in autoclave as 387.82 mL CH4/gVSfeed. Besides, a mixed substrate (70
pretreated and 30 un-pretreated) could enhance SMP by 60% as 376.11 mL CH4/gVSfeed
(RSB + Acid 2% + MW 300Watts for 2 min) or 280 mL CH4/gVSfeed (ESB + Alkaline
2% + Autoclave 120°C, 30 min).
The applied pretreatment methods increased the biogas production from raw sugar beet
(RSB) and exhausted sugar beet (ESB) by 40 – 65%. Also, it opened a new approach to
investigate with the mixed substrate combination, which can reduce the cost
implementation of the pretreatments in the industrial scale. | tr_TR |
dc.description.tableofcontents | ABSTRACT ............................................................................................................................... i
ÖZET ....................................................................................................................................... iii
ACKNOWLEDGMENT .......................................................................................................... vv
TABLE OF CONTENT.......................................................................................................... vvii
LIST OF FIGURES .................................................................................................................... x
LIST OF TABLES ................................................................................................................ xixii
LIST OF ABBREVIATIONS ............................................................................................... xiiiiii
1. INTRODUCTION .................................................................................................................. 1
1.1 Renewable Energies‟ Role in the Current World ............................................................... 2
1.2 General Information about Colombia and Turkey: Energy Production .............................. 3
1.3 Residues and Energy Potential .......................................................................................... 5
1.3.1 Turkey ....................................................................................................................... 5
1.3.2 Colombia ................................................................................................................... 8
1.4 Biogas production from Sugar Beet ................................................................................ 11
1.4.1 Sugar Production: Sugar Beet as a Residue .............................................................. 11
1.4.1.1 Sugar Beet Sowing and Harvest ............................................................................ 11
1.4.1.2 Beet Receiving and Extraction .............................................................................. 12
1.4.1.3 Juice Purification and Evaporation ........................................................................ 12
1.4.1.4 Crystallization ....................................................................................................... 12
1.4.1.5 Centrifugation ....................................................................................................... 12
1.4.1.6 Storing and preparing varieties of sugar ................................................................ 13
1.5 Sugar Beet Bagasse Characterization: Composition ........................................................ 13
1.5.1 Leaves ..................................................................................................................... 13
1.5.2 The head .................................................................................................................. 14
1.5.3 Body and roots ......................................................................................................... 14
1.6 Pretreatments for Biogas Production ............................................................................... 17
1.6.1 Physical Pretreatments ............................................................................................. 17
1.6.2 Chemical Pretreatments............................................................................................ 17
1.6.3 Biological Pretreatments .......................................................................................... 17
1.7 Biogas Production: Anaerobic Digestion (AD) Process ................................................... 18
1.7.1 Anaerobic Digestion Process: Hydrolysis ................................................................. 20
1.7.2 Anaerobic Digestion Process: Acidogenesis ............................................................. 21
1.7.3 Anaerobic Digestion Process: Acetogenesis ............................................................. 22
1.7.4 Anaerobic Digestion Process: Methanogenesis ......................................................... 22
1.8 Biogas Production: The Parameters Affecting Anaerobic Digestion (AD) ....................... 23
1.8.1 The Parameters Affecting AD: Temperature ............................................................. 23
1.8.2 The Parameters Affecting AD: pH – Value............................................................... 25
1.8.3 The Parameters Affecting AD: Presence of Inhibitors .............................................. 25
1.9 Biogas as an Energy Source ............................................................................................ 26
2. METHODS AND MATERIALS .......................................................................................... 29
2.1 Sugar Beet Reception and Preparation ............................................................................ 29
2.1.1 Reception ................................................................................................................. 29
2.1.2 Preparation ............................................................................................................... 29
2.2 Pretreatments .................................................................................................................. 29
2.2.1 Chemical Pretreatments ............................................................................................ 30
2.2.2 Physical Pretreatments ............................................................................................. 31
2.2.2.1 Microwave Pretreatment ....................................................................................... 32
2.2.2.2 Autoclave Pretreatment ......................................................................................... 32
2.3 Biochemical Methane Potential Process .......................................................................... 33
2.3.1 Sludge Reception and Preparation ............................................................................ 33
2.3.2 Biochemical Methane Potential Tests ....................................................................... 33
2.3.3 Monitoring of the BMP Tests ................................................................................... 34
2.4.1 Fourier Transform Infrared Spectroscopy Analysis................................................... 36
3. RESULTS & DISCUSSION ................................................................................................. 37
3.1 General characterization of the substrates ........................................................................ 37
3.1 Sugar Solubility after Chemical Pretreatments ................................................................ 39
3.1.1 Sugar Solubility after Chemical Pretreatments: Short Time Duration Process ........... 40
3.1.2 Sugar Solubility after Chemical Pretreatments: Long Time Duration Process ........... 41
3.2 Sugar Solubility after Physical Pretreatments .................................................................. 42
3.2.1 Sugar Solubility after Physical Pretreatments: Microwave Assisted Process ............. 42
3.2.2 Sugar Solubility after Physical Pretreatments: Autoclave Process ............................. 43
3.3 Sugar Solubility after Physicochemical Pretreatments ..................................................... 44
3.3.1 Sugar Solubility after Physicochemical Pretreatments: Microwave........................... 45
3.3.2 Sugar Solubility after Physicochemical Pretreatments: Autoclave ............................ 46
3.4 Effect of Chemical Pretreatments on Biogas Production – Test 1 .................................... 47
3.4.1 Effect of Chemical Pretreatments: Short Time Duration Process .............................. 47
3.4.2 Effect of Chemical Pretreatments: Long Time Duration Process .............................. 50
3.5 Effect of Physical Pretreatments on Biogas Production – Test 1 ...................................... 52
3.5.1 Effect of Physical Pretreatments: Microwave Assisted Process ................................ 52
3.5.2 Effect of Physical Pretreatments: Autoclave ............................................................. 54
3.6 Effect of Physicochemical Pretreatments on Biogas Production – Test 1 ......................... 56
3.6.1 Effect of Physicochemical Pretreatments: Microwave .............................................. 56
3.6.2 Effect of Physicochemical Pretreatments: Autoclave ................................................ 58
3.7 Effect of Chemical Pretreatments on Biogas Production – Test 2 .................................... 61
3.7.1 Effect of Chemical Pretreatments: Short Time Duration Process .............................. 61
3.7.2 Effect of Chemical Pretreatments: Long Time Duration Process .............................. 62
3.8 Effect of Physical Pretreatments on Biogas Production – Test 2 ...................................... 64
3.8.1 Effect of Physical Pretreatments: Microwave Assisted Process ................................ 64
3.8.2 Effect of Physical Pretreatments: Autoclave ............................................................. 65
3.9 Effect of Physicochemical Pretreatments on Biogas Production – Test 2 ......................... 66
3.9.1 Effect of Physicochemical Pretreatments: Microwave .............................................. 66
3.9.2 Effect of Physicochemical Pretreatments: Autoclave ................................................ 67
3.10 Discussion of the Results .............................................................................................. 69
4. CONCLUSIONS .................................................................................................................. 73
5. REFERENCES ..................................................................................................................... 79
CURRICULUM .................................................................................................................... 83 | tr_TR |
dc.language.iso | en | tr_TR |
dc.publisher | Fen Bilimleri Enstitüsü | tr_TR |
dc.rights | info:eu-repo/semantics/openAccess | tr_TR |
dc.subject | Lignoselülozik artıklar | tr_TR |
dc.subject | Ham şeker pancarı | tr_TR |
dc.subject | Bitkin şeker pancarı | tr_TR |
dc.subject | Ön arıtmalar | tr_TR |
dc.subject | Anaerobik sindirim | tr_TR |
dc.subject | Biyogaz üretimi | tr_TR |
dc.subject.lcsh | Konu Başlıkları Listesi::Tarım | tr_TR |
dc.title | Pretreatment of Sugar Beet Bagasse for
Enhance Biogas Production | tr_eng |
dc.title.alternative | Biyogaz Üretiminin Artırılması İçin Şeker Pancarı Küspesinin Ön Arıtımı | tr_TR |
dc.type | info:eu-repo/semantics/masterThesis | tr_TR |
dc.description.ozet | Dünya enerji tüketimi sön dönemlerde fosil yakıt kıtlığı ile insanlığı tehdit eden talebin
artmasına bağlı olarak artmaktadır. Bu nedenle araĢtırma, yenilenebilir enerji kaynakları
gibi alternatif enerji kaynaklarına odaklanmıĢtır. Biyogaz üretimi, çeĢitli türlerdeki
biyokütle besleme stoğundan veya uygun Ģekilde atılmadığı takdirde çevre üzerinde
olumsuz etkileri olabilecek atıklardan üretilen alternatif bir enerji kaynağı olarak kabul
edilmektedir. Kademeli olarak diğer yenilenebilir enerji kaynaklarına kıyasla biyogaz,
pazardaki verimlilik ve teknoloji değiĢikliği eksikliğinden dolayı yeni hız
kazanmaktadır.
Anaerobik bozulmada karĢılaĢılan problemler, lignoselülozik biyokütlenin karmaĢık ve
sert yapısından kaynaklanmaktadır. Hidroliz oranını ve biyogaz üretimini arttırmak için
etkin bir bozulma gerekmektedir. Lignoselülozik biyokütleden biyogaz üretimini
arttırmanın bir yolu olarak biyolojik olarak parçalanmayı arttırmak için anaerobik
sindirim iĢleminden önce alt tabakaya ön arıtmalar uygulanmaktadır. Biyometan
verimini arttırmak için fiziksel, kimyasal ve biyolojik ön arıtımılar yaygın olarak
incelenmektedir. Biyometan üretimi, çeĢitli ön arıtmalar uygulamalarıyla %25 ve >%100 oranında arttırılabilmektedir. Çesitli ön arıtım kombinasyonları da
uygulanmaktadır.
Ön arıtma yönteminin seçimi uygulama prosedürü, zaman, enerji ve kimyasal
maliyetlerle ilgilidir. Ayrıca, kullanılan reaktifler nedeniyle kimyasal reaktiflerin
etkinliği, olası korozyon veya bozulma da göz önünde bulundurulmaktadır.
Bu araĢtırmada, Ģeker pancarı küspesinin lignoselülozik yapısının bozulması üzerine
fiziksel ve kimyasal ön arıtımıların etkileri ve bunların kombinasyonları, ve (ii)
Biyokimyasal Metan Üretimi (BMP) testlerinin uygulanmasıyla ön arıtma
yöntemlerinin metan üretimine etkisi incelenmiĢtir.
Mevcut araĢtırmadaki önceki veriler göz önüne alınarak, ham Ģeker pancarı (RSB) ve
bitkin Ģeker pancarı (ESB) incelenmiĢtir. ġeker pancarı küspesi %22-30 selüloz, %22-
30 hemiselüloz, %24-32 pektin ve %1-3 lignin içeriğine sahip olmaktadır. Kimyasal ön
arıtma yöntemleri olarak, seyreltik H2SO4 ile asit ön arıtma ve seyreltik NaOH ile
alkalik ön muamele kullanılmıĢdır. Fiziksel ön arımalar, mikrodalga ve otoklav altında
yapılmaktadır.
Fiziksel ön arıtma kapsamında spesifik metan üretim potansiyeli (SMP) 328.90 mL
CH4 / gVSfeed ile sonuçlanmaktadır, bu da 2 dakika boyunca mikrodalga
radyasyonuyla (300 Watt) %40 artmaktadır. %2 NaOH (25 ° C'de, 48 saatte) ile alkalin
ön arıtma, %45'lik bir artıĢı temsil eden 286.96 mL CH4 / gVSfeed elde edildi. Ayrıca,
fizikokimyasal ön arıtma sırasında Ģeker pancarı 30 dakika boyunca 120 ° C'de %2 asite
maruz bırakıldığında 387.82 mL CH4 / gVSfeed olarak otoklavda biyometan üretim
potansiyelini %65 artmaktadır. Üstelik, karıĢık bir substrat (önceden arıtma edilmiĢ 70
ve önceden arıtma edilmemiĢ 30), SMP'yi %60 oranında 376.11 mL CH4 / gVSfeed (2
dakika için RSB + Asit %2 + MW 300Watts) veya 280 mL CH4 / gVSfeed (ESB +
Alkalin 2% + Otoklav 120 ° C, 30 dak) arttırabilmektedir.
Uygulanan ön arıtma yöntemleri, ham Ģeker pancarı (RSB) ve bitkin Ģeker pancarı
(ESB) kaynaklı biyogaz üretimini %40 - 65 oranında artırmıĢtadır. Aynı zamanda,
karıĢık substrat kombinasyonuyla araĢtırma yapmak için endüstriyel bir ölçekte ön
arıtmaların maliyetini düĢüren yeni bir yaklaĢım açmaktadır. | tr_TR |
dc.contributor.department | Temiz Tükenmez Enerjiler | tr_TR |
dc.embargo.terms | Acik erisim | tr_TR |
dc.embargo.lift | 2019-11-26T13:39:11Z | |