Basit öğe kaydını göster

dc.contributor.advisorYolaçaner, Elif
dc.contributor.authorYiğit, Ünzile
dc.date.accessioned2018-10-05T11:20:07Z
dc.date.issued2018
dc.date.submitted2018-08-31
dc.identifier.citation[1] Clifford, M.N., Chlorogenic acids and other cinnamates – nature, occurrence and dietary burden, Journal of the Science of Food and Agriculture,79, 362–372, 1999. [2] Scalbert, A., Manach, C., Morand, C., Remesy, C., Jimenez, L., Dietary polyphenols and the prevention of diseases, Critical Reviews in Food Science and Nutrition , 45, 287–306, 2005. [3] Nichenametla, S.N., Taruscio, T.G., Barney, D.L., Exon, J.H., A review of the effects and mechanisms of polyphenolics in cancer, Critical Reviews in Food Science and Nutrition, 46, 161–183, 2006. [4] Manach, C., Scalbert, A., Morand, C., Rémésy, C., Jimenez, L. Am. J. Polyphenols: food sources and bioavailability, The American Journal of Clinical Nutrition, 79, 727–747, 2004. [5] Amarowicz, R., Carle, R., Dongowski, G., Durazzo, A., Galensa, R., Kammerer, D., Maiani, G., Piskula, M.K., Influence of postharvest processing and storage on the content of phenolic acids and flavonoids in foods, Molecular Nutrution Food Research, 53, S151–S183, 2009. [6] Selma, M. V., Espin, J. C., Tomas-Barberan, F.J., Interaction between phenolics and gut microbiota: role in human health, Journal of Agricultural and Food Chemistry, 57, 6485–6501, 2009. [7] M Herrero, M., Plaza, M., Cifuentes, A., Ibanez, E., Extraction Techniques for the Determination of Phenolic Compounds in Ford, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain, 2012. [8] Saldamlı, İ., Acar, J., Gökmen, V., Gıda Kimyası, 6. Baskı, Hacettepe Üniversitesi Yayınları, 2017. [9] Bueno, J.M., Ramos-Escudero, F., Sáez-Plaza, P., Muñoz, A.M., Navas, M.J., Asuero, A.G., Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part I: General Considerations Concerning Polyphenols and Flavonoids, Critical Reviews in Analytical Chemistry, 42:2, 102-125, 2012. [10] Tomas-Barberan, F.A., Clifford, M.N., Dietary hydroxybenzoic acid derivatives – nature, occurrence and dietary burden, Journal of the Science of Food and Agriculture, 80, 1024–1032, 2000. [11] Clifford, M. N., Scalbert, A., Ellagitannins – nature, occurrence and dietary burden, Journal of the Science of Food and Agriculture, 80, 1118–1125, 2000. [12] Adlercreutz, H., Mazur, W., Phyto-oestrogens and Western diseases, Annals of Medicine, 29, 95–120, 1997. [13] Milder, I.E.J., Arts, I.C.W., Van de Putte, B., Venema, D.P., Hollman, P.C.H., Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol, British Journal of Nutrition, 93/3, 393-402, 2005. [14] Crozier, A., Lean, M.E.J., McDonald, M.S., Black, C. Quantitative Analysis of the Flavonoid Content of Commercial Tomatoes, Onions, Lettuce, and Celery, Journal of Agricultural and Food Chemistry, 45, 590–595, 1997. [15] Macheix, J.J., Fleuriet, A., Billot, J., Fruit Phenolics, CRC Press: Boca Raton London New York Washington, D.C, 1990. [16] Price, S.F., Breen, P.J., Valladao, M., Watson, B.T., Cluster Sun Exposure and Quercetin in Pinot noir Grapes and Wine, American Journal of Enology and Viticulture, 46, 187–194, 1995. [17] Feng, Y., McDonald, C.E., Vick, B.C., Glycosylflavones from Hard Red Spring Wheat Bran, Cereal Chemistry, 65, 452–456, 1988. [18] Tomas-Barberan, F.A., Clifford, M.N., Flavanones, chalcones and dihydrochalcones–nature, occurrence and dietary burden, Journal of the Science of Food and Agriculture, 80:1073-1080, 2000. [19] Lakenbrink, C., Lapczynski, S., Maiwald, B., Engelhardt, U.H., Flavonoids and other polyphenols in consumer brews of tea and other caffeinated beverages, Journal of Agricultural and Food Chemistry, 48, 2848–2852, 2000. [20] Arts, I.C., Van De Putte, B., Hollman, P.C.J., Catechin contents of foods commonly consumed in the Netherlands 2. Tea, wine, fruits juices, and chocolate milk. Journal of Agricultural and Food Chemistry, 48, 1752–1757, 2000. [21] Santos-Buelga, C., Scalbert, A., Proanthocyanidins and tannin‐like compounds – nature, occurrence, dietary intake and effects on nutrition and health, Journal of the Science of Food and Agriculture, 80:1094-1117, 2000. [22] Kong, J.M., Chia, L.S., Goh, N.K., Chia, T.F., Brouillard, R. Analysis and biological activities of anthocyanins, Phytochemistry, 64, 923–933, 2003. [23] Andersen, O., Markham, K.R., Flavonoids. Chemistry, Biochemistry and Applications, First Edition, CRC Press, 2006. [24] Rolle, L., Guidoni, S., Color And Anthocyanın Evaluatıon of Red Wınegrapes By CIE L*, A*, B* Parameters, Journal international des sciences de la vigne et du vin, 41, 193–198, 2007. [25] Escribano-Bailon, M.T., Santos-Buelga, C., Rivas-Gonzalo, J.C., Anthocyanins in cereals., Journal of Chromatography A, 1054, 129–141, 2004. [26] Damar, İ., Vişne Suyunun Antosiyanin Profili Ve Antioksidan Kapasitesi, Yüksek Lisans Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2010. [27] María José Navas, M.J., Jiménez-Moreno, A.M., Julia Martín Bueno J.M.J., Sáez-Plaza, P., Asuero, A.G., Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part III: An Introduction to Sample Preparation and Extraction, Critical Reviews in Analytical Chemistry, 42:4, 284-312, 2012. [28] Silva, E.M. Costa, C. Calhau, R.M. Morais, M.E. Pintado Anthocyanin extraction from plant tissues: A review, Critical Reviews in Food Science and Nutrition, 57:14, 3072-3083, 2017. [29] Yousuf, B., Gulb, K., Wani, A., Singh, P., Health benefits of anthocyanins and their encapsulation for potential use in food systems, Critical Reviews in Food Science and Nutrition, 2;56(13):2223-30, 2016. [30] Bernstein, A., Noreña, C.P.Z., Encapsulation of Red Cabbage (Brassica oleracea L. var. capitata L. f. rubra) Anthocyanins by Spray Drying using Different Encapsulating Agents, Brazılıan Archıves Of Bıology And Technology, Vol.58, n.6: pp. 944-952, 2015. [31] Türkiye İstatistik Kurumu - İstatistik Tablolar ve Dinamik Sorgulama - Başka Yerde Sınıflandırılmamış Diğer Sebzeler, Kaynak Gıda Tarım ve Hayvancılık Bakanlığı http://www.tuik.gov.tr/PreTablo.do?alt_id=1001, (2017). [32] Wiczkowski, W., Szawara-Nowak, D., Topolska, J., Red cabbage anthocyanins: Profile, isolation, identification, and antioxidant activity, Food Research International, Volume 51, Issue, 1303-309, 2013. [33] Park, S., Arasu, M.V., Lee, M.K., Chun, J.H., Seo, J.M., Al-Dhabi, N.A., Kim, S.J., Analysis and metabolite profiling of glucosinolates, anthocyanins and free amino acids in inbred lines of green and red cabbage (Brassica oleracea L.), Food Science and Technology, 58:1, 203-213, 2014. [34] Chandrasekhar, J., Madhusudhan, M.C., Raghavarao, K.S.M.S., Extraction of anthocyanins from red cabbage and purification using adsorption, Food And Bioproducts Processing, 9 0, 615–623, 2012. [35] Routray, W., Orsat, V., Microwave-Assisted Extraction of Flavonoids: A Review, Food Bioprocess Technology, 5:409–424, 2012. [36] Stalikas, C.D., Extraction, separation, and detection methods for phenolic acids and flavonoids. Journal of Separation Science, 30(18), 3268–3295, 2007. [37] Søltoft, M., Christensen, J.H., Nielsen, J., Knuthsen, P., Pressurised liquid extraction of flavonoids in onions. Method development and validation, Talanta, 80(1), 269–278, 2009. [38] Kalia, K., Sharma, K., Singh, H.P., Singh, B., Effect of extraction methods on phenolic contents and antioxidant activity in aerial parts of Potentilla atrosanguinea Lodd. and quantification of its phenolic constituents by RP-HPLC. Journal of Agricultural and Food Chemistry, 56(21), 10129–10134, 2008. [39] Özdoğan, K., Geleneksel Ve Ultrasonik Yöntemlerle Kırmızı Lahana Antosiyaninlerinin Ekstraksiyon Koşullarının Optimizasyonu, Yüksek Lisans Tezi, Gaziosmanpaşa Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, Tokat, 2015. [40] Qian, Z. M., Lu, J., Gao, Q. P., Li, S. P., Rapid method for simultaneous determination of flavonoid, saponins and polyacetylenes in Folium ginseng and Radix ginseng by pressurized liquid extraction and high-performance liquid chromatography coupled with diode array detection and mass spectrometry, Journal of Chromatography A, 1216(18), 3825–3830, 2009. [41] Rao, M.A., Rizvi, S.S.H., Datta, A.K., Engineering properties of Foods, 4th edition, CRC Press, 2014. [42] Zhongdong, L., Guohua, W., Yunchang, G., Kennedy, J. F., Image study of pectin extraction from orange skin assisted by microwave, Carbohydrate Polymers, 64(4), 548–552, 2006. [43] Roberts, J.S., Gerard, K.A., Development and evaluation of microwave heating of apple mash as a pretreatment to pressing, Journal of Food Process Engineering, 27(1), 29–46, 2004. [44] Sanchez-Prado L., Lamas J.P., Lores M., Garcia-Jares C., Llompart M., Simultaneous in-cell derivatization pressurized liquid extraction for the determination of multiclass preservatives in leave-on cosmetics, Analytical Chemistry, 15;82(22):9384-92, 2010. [45] Zhang, F., Yang, Y., Su, P., Guo, Z., Microwave assisted extraction of rutin and quercetin from the stalks of Euonymus alatus (Thunb.) Sieb, Phytochemical Analysis, 20(1), 33–37, 2009. [46] Du, F.Y., Xiao, X.H., Luo, X.J. Li, G.K., Application of ionic liquids in the microwave-assisted extraction of polyphenolic compounds from medicinal plants, Talanta, 78(3), 1177–1184, 2009. [47] Liazid, A., Palma, M., Brigui, J., Barroso, C.G., Investigation on phenolic compounds stability during microwave-assisted extraction, Journal of Chromatography A, 1140(1–2), 29–34, 2007. [48] Xiao, W., Han, L., Shi, B., Microwave-assisted extraction of flavonoids from Radix astragali, Separation and Purification Technology, 62(3), 614–618, 2008. [49] Nkhili, E.; Tomao, V.; El Hajji, H.; El Boustani, E. S.; Chemat, F.; Dangles, O. Microwave-assisted water extraction of green tea polyphenols, Phytochemical Analysis, 20, 408–415, 2009. [50] Ballard, T.S., Mallikarjunan, P., Zhou, K., ÓKeefe, S., Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins, Food Chemistry, 120, 1185–1192, 2010. [51] Hayat, K., Hussain, S., Abbas, S., Farooq, U., Ding, B., Xia, S., Jia, C., Zhang, X., Xia, W., Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro, Seperation and Purification Technology, 70, 63–70, 2009. [52] Yang, Z., Zhai, W., Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC-MS, Innovative Food Science & Emerging Technologies, 11(3), 470–476, 2010. [53] Liazid, A., Guerrero, R.F., Cantos, E., Palma, M., Barrosso, C.G., Microwave assisted extraction of anthocyanins from grape skin, Food Chemistry, 3, 1238-1243, 2011. [54] Zou, T., Wang, D., Guo, H., Zhu, Y., Luo, X., Liu, F., Ling, W., Optimization of microwave assisted extraction of anthocyanins from mulberry and identification of anthocyanins in extract using HPLC-ESI-MS, Journal of Food Science, 77(1), 46-50, 2012. [55] Ince, A.E., Sahin, S., Sumnu, S.G., Extraction of phenolic compounds from Melissa using microwave and ultrasound, Turkish Journal of Agriculture and Forestry, 37, 69-75, 2013. [56] Yang, Z., Zhai, W., Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC–MS, Innovative Food Science and Emerging Technologies, 11, 470–476, 2010. [57] Garofulic, I.E., Dragovic´-Uzelac, V., Jambrak, A.R., Jukic, M., The effect of microwave assisted extraction on the isolation of anthocyanins and phenolic acids from sour cherry Marasca (Prunus cerasus var. Marasca), Journal of Food Engineering, 117 437–442, 2013. [58] Zheng, X., Xu, X., Liu, C., Sun, Y., Lin, Z., Liu, H., Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions, Separation and Purification Technology, 104, 17–25, 2013. [59] Liazid, A., Guerrero, R.F., Cantos, E., Palma, M., Barrosso, C.G., Microwave assisted extraction of anthocyanins from grape skin, Food Chemistry, 3, 1238-1243, 2011. [60] Dahmoune, F., Nayak, B., Moussi, K., Remini, H., Madani, K., Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves, Food Chemistry, 166, 585–595, 2015. [61] İnce, A.E., Usage Of Mıcrowave And Ultrasound In The Extractıon Of Essentıal Oıls And Phenolıc Compounds, The Degree of Master of Scıence, Mıddle East Technıcal Unıversıty, Ankara, 2011. [62] Simsek, M., Sumnu, G., Sahin, S., Microwave Assisted Extraction of Phenolic Compounds from Sour Cherry Pomace, Separation Science and Technology, 47: 1248–1254, 2012. [63] Baş, D., Boyacı, İ.H., Modeling and optimization I: Usability of response surface methodology, Journal of Food Engineering, 8, 836–845, 2007. [64] Eren, İ., Patateslerin Osmotik Dehidrasyonunun “Response Surface” Metodu Kullanılarak Optimizasyonu, Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir, 2004. [65] Demirdöven, A., Karabıyıklı, Ş., Tokatlı, K., Öncül, N., Inhibitory effects of red cabbage and sour cherry pomace anthocyanin extracts on food borne pathogens and their antioxidant properties, Food Science and Technology, 63:1, 8-13, 2015. [66] Ravanfar, R., Tamaddon, A.M, Niakousari, M., Moein, M.R., Preservation of anthocyanins in solid lipid nanoparticles: Optimization of a microemulsion dilution method using the Placket–Burman and Box– Behnken designs, Food Chemistry, 199, 573–580, 2016. [67] Chen, F., Sun, Y., Zhao, G., Liao, X., Hu, X., Wu, J., Wang, Z., Optimization of ultrasound-assisted extraction of anthocyanins in red raspberries and identification of anthocyanins in extract using high-performance liquid chromatography–mass spectrometry, Ultrasonics Sonochemistry, 14, 767–778, 2007. [68] Damar, İ., Vişne Suyunun Antosiyanin Profili Ve Antioksidan Kapasitesi, Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2010. [69] Wu, X., Gu, L., Prıor, R.L., Characterization of Anthocyanins and Proanthocyanidins in Some Cultivars of Ribes, Aronia, and Sambucus and Their Antioxidant Capacity, Journal of Agricultural and Food Chemistry, 52, 7846−7856, 2004. [70] Giusti, M.M., Wrolstad, R.E., Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy, Current Protocols in Food Analytical Chemistry, F 1.2.1-F 1.2.13, 2001. [71] Xu, Z., Wu, J., Zhang, Y., Hu, X., Liao, X., Wang, Z., Extraction of anthocyanins from red cabbage using high pressure CO2, Bioresource Technology, 101, 7151–7157, 2010. [72] Doğan, Cömert, E., Gökmen, V., Antioxidants Bound to an Insoluble Food Matrix: Their Analysis, Regeneration Behavior and Physiological Importance, Comprehensive Reviews in Ford Science and Ford Safety, 16, doi: 10.1111/1541-4337.12263, 2017. [73] Doğan, E., Increasıng The Total Antıoxıdant Capacıty Bound To Insoluble Dıetary Fıber, Master Of Science, Hacettepe Universıty, Department of Food Engineering, Ankara, 2015. [74] Özyürek, M., Güçlü, K., Apak, R., The main and modified CUPRAC methods of antioxidant measurement, Trends in Analytical Chemistry, Vol. 30, No. 4, 2011. [75] Bekdeşer, B., Bener, M., Önem, A.N., Apak, R., Toplam Antioksidan Kapasite Tayini için CUPRAC Yöntemi Uygulama Föyü, file:///C:/Users/hp/Downloads/CUPRAC+Y%C3%B6ntemi+Uygulama+F%C3%B6y%C3%BC.pdf . [76] Tufan, A.N., Çelik, S.E., Özyürek, M., Güçlü, K., Apak, R., Direct measurement of total antioxidant capacity of cereals: QUENCHER-CUPRAC method, Talanta, 108, 136-142, 2013. [77] Albayrak, S., Sağdıç, O., Aksoy, A., Bitkisel ürünlerin ve gıdaların antioksidan kapasitelerinin belirlenmesinde kullanılan yöntemler, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(4), 401-9, 2010. [78] Serpen, A., Gökmen, V., Fogliano, V., Total antioxidant capacities of raw and cooked meats, Meat Science, 90, 60–65, 2012. [79] Demirdöven, A., Özdoğan, K., Erdoğan-Tokatlı, K., Extractıon of anthocyanıns from red cabbage by ultrasonıc and conventıonal methods: optımızatıon and evaluatıon, Journal of Food Biochemistry, ISSN 1745-4514, 2015. [80] İnce, A.E., Şahin, S., Şümnü, S.G., Extraction of phenolic compounds from melissa using microwave and ultrasound, Turkey Turkish Journal of Agriculture and Forestry, 37: 69-75 c, doi:10.3906/tar-1201-1, 2013. [81] Myers H.R., Montgomery, C.D., Anderson-Cook, C.M., Response Surface Methodology: Process And Product Optimization Using Designed Experiments, 4th Edition, 2016. [82] He, B., Zhang, L.L., Yue, X.Y., Liang, J., Jiang, J., Gao, X.L., Yue, P.X., Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace, Food Chemistry, 204,70–76, 2016. [83] Zou, T., Wang, D., Guo, H., Zhu, Y., Luo, X., Liu, F., Ling, W., Optimization of Microwave-Assisted Extraction of Anthocyanins from Mulberry and Identification of Anthocyanins in Extract Using HPLC-ESI-MS, Journal of Food Science, Vol. 71, Nr. 1, 2012. [84] Akdeniz. B., Evaluation of different coating materials for encapsulation of phenolic compounds extracted from onion (Allium Cepa) skin, Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi, Gıda Mühendisliği Bölümü, Ankara, 2017. [85] Akdeniz, B., Şümnü, G., Şahin, S., Microencapsulation of phenolic compounds extracted from onion (Allium cepa) skin, Journal of food Processing and Preservation, DOI: 10.1111/jfpp.13648, 2018. [86] Gil, M.I., Tomàs-Barberàn, F.A., Hess-Pierce, B., Holcroft, D.M., Kader, A.A., Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing, Journal of Agriculture and Food Chemistry, 48, 4581–9, 2000. [87] Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., Gonzalez, M.C., Condezo-Hoyos, L., Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano, Food Chemistry, 183:83–90, 2015. [88] Doğan-Cömert, E., Gökmen, V., Antioxidants Bound to an Insoluble Food Matrix: Their Analysis, Regeneration Behavior, and Physiological Importance, ComprehensiveReviewsinFoodScienceandFoodSafety , Vol.16, 2016. [89] Özyürek, M.K.E., Sözgen Başkan, K., Erçağ, E., Çelik, S.E., Baki, S., Yıldız, L., Karaman, Ş., Reşat Apak, R., A comprehensive review of CUPRAC methodology, Analytica Lmethod, 11, 2011. [90] Gachovska, T., Cassada, D., Subbiah, J., Hanna, M., Thippareddi, H., Snow, D., Enhanced Anthocyanin Extraction from Red Cabbage Using Pulsed Electric Field Processing, Journal of Food Science, Vol. 75, Nr. 6, 2010. [91] Sahat, N.S., Zaidal, D.N.A, Muhamad, I.I., Alam, M.N.H.Z., Stability Study of Water-in-Oil Emulsion Containing Anthocyanins from Red Cabbage, Jurnal Teknologi, 69[4], 158, 2014. [92] Bernstein, A., Noreña, C.P.Z., Thermodynamic sorption of red cabbage extract (Brassica oleracea L. var. capitata L. f. rubra) encapsulated by spray drying, Journal Food Science Technology, 52(12):8180–8187, 2015. [93] Wu, X., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Gebhardt, S.E., Prior, R.L., Lipophilic and hydrophilic antioxidant capacities of common foods in the United States, Journal of Agriculture and Food Chemistry, 52, 4026–4037, 2004. [94] Vaji´c, U.J., Mihailovi´c, J.G., Zivkovi´c, J., Savikin, K., Godevac, D., Miloradovi´c, Z., Bugarski, B., Stanojevi´c, M.N., Optimization of extraction of stinging nettle leaf phenolic compounds using response surface methodology, Industrial Crops and Products, 74, 912–917, 2015. [95] Afoakwah A.N., Owusu, J., Adomako, C., Teye E., Mıcrowave assısted extractıon (MAE) of antıoxıdant constıtuents ın plant materıals, Global Journal of Bio-Science&Biotechnology, Vol.1 (2), 132-140, 2012. [96] Safari, P., Rezaei, M., Shaviklo, A.R., The optimum conditions for the extraction of antioxidant compounds from the Persian gulf green algae (Chaetomorpha sp.) using response surface methodology, Journal Food Science Technology, 52(5):2974–2981, 2015. [97] Mizgier, P., Kucharska, A.Z., Sokół-Łe˛towska, A., Kolniak-Ostek, J., Kidon, M., Fecka, I., Characterization of phenolic compounds and antioxidant and anti-inflammatory properties of red cabbage and purple carrot extracts, Journal of Functional Foods, 21, 133–146, 2016. [98] Pliszka, B., Huszcza-Ciołkowska, G., Mieleszko, E., Czaplicki, S. Stability and antioxidative properties of acylated anthocyanins in three cultivars of red cabbage (Brassica oleracea L. var. capitata L. f. rubra), Journal of the Science of Ford and Agriculture, 89, 1154–1158, 2009. [99] Arapitsas, P., Sjöberg, P.J.R., Turner, C.H., Characterisation of anthocyanins in red cabbage using high resolution liquid chromatography coupled with photodiode array detection and electrospray ionization-linear ion trap mass spectrometry, Food Chemistry, 109, 219–226, 2008. [100] Charron, C.S., Clevidence, B.A., Britz, S.J., Novotny, J.A., Effect of dose size on bioavailability of acylated and nonacylated anthocyanins from red cabbage (Brassica oleracea L. var. capitata), Journal of Agricultural and Food Chemistry, 55, 5354–5362, 2007.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/5195
dc.description.abstractRed cabbage (Brassica oleracea L.) is a vegetable, which is unique in its anthocyanins and has a positive effect on health because of its high antioxidant capacity, which is used in the coloring of foods due to its color display at a very wide pH range. In the study, red cabbage anthocyanins were extracted by microwave assisted (MAE) and conventional methods. Total monomeric anthocyanin content (TMA), total phenolic material content (TPM) and total antioxidant capacities (TAKDPPH ve TAKCUPRAC) of red cabbage extracts were measured. Process conditions were optimized using the response surface method. The main types of anthocyanins found in red cabbage were determined by using DAD-LC-MS. In the conventional extraction method, three parameters were chosen as independent variables, which were extraction time (4 and 6 hours), extraction temperature (40 °C, 70 °C) and solvent type (water, ethanol/water (1/1, v/v)). According to the results, the highest values for TMA, TPM, TAKDPPH and TAKCUPRAC were given by the condition of ethanol/water (1/1, v/v) at 40 ° C and 4 hours of extraction. The results were 240,69 mg cyanidin / L, 1677,33 mg GAE / L, 66,34 mg DPPH / L, 16,77 mmolTE / L, respectively. The lowest values for TMA, TPM, TAC were given by the condition that the solvent was water at 40 ° C and 4 hours of extraction. The results were 125,91 mg cyanidin / L, 1018,52 mg GAE / L, 33,12 mg DPPH / L, 8.91 mmolTE / L. The Box-Behnken experimental design was used to determine the optimum conditions for MAE. The effects of independent variables chosen as extraction time (X1), solid/solvent ratio (X2) and microwave power (X3) on TMA, TPM, TAKDPPH ve TAKCUPRAC values (dependent variables) were investigated by a response surface methodology (RSM). When the solvent was the ethanol/water mixture, X1 and X2 affected the TMA values significantly (p≤0.05) and power values (X3) was found insignificant on TMA value. When the solvent type was water, X2 and X3 were significantly effective (p≤0.05) on the TMA amount in the extract while X1 was not effective. When the solvent was ethanol-water (1/1, v/v), optimum conditions were 9,85 minutes, 1/20 solid/ solvent ratio and 595,96 W microwave power. According to models detemined, optimum TMA amount was found to be 438 mg cyanidin / L, optimum TPM amount was 1143,43 mg GAE / L, optimum TACCUPRAC amount was 16,80 mmol TE / L and optimum TACDPPH amount was 134,823 mg DPPH / L. When the solvent was water, optimum conditions were 5 minutes, 1/20 solid/solvent ratio and 309,091 W microwave power. According to models detemined, optimum TMA amount was found to be 131,86 mg cyanidin / L, optimum TPM amount 1952,85 mg GAE / L, optimum TACCUPRAC amount 20,90 mmol TE / L, optimum TACDPPH amount 120,63 mg DPPH / L. It was observed that MAE gives similar results with conventional method in shorter time by using less solvent amount. Cyanidin-3-glucoside-5-glucoside, cyanidin-3-diglucoside-5-glucoside, cyanidin-3-glucoside-5-glucoside, cyanidin-3-(p-coumaroyl)-diglucoside-5-glucoside, cyanidin-3-(sinapoyl)-diglucoside-5-glucoside, cyanidin-3-(feruloyl) (feruloyl)-diglucoside-5-glucoside, cyanidin-3-(feruloyl) (sinapoyl)-diglucoside-5-glucoside, cyanidin-3-(sinapoyl)(sinapoyl)-diglucoside-5-glucoside are comman anthocyanins of red cabbage in ethanol-water and water extracts. Unlike water extracts, cyanidine-3-o-glucoside peak was found in ethanol-water extracts.tr_TR
dc.description.tableofcontentsİÇİNDEKİLER Sayfa ÖZET……………………………………………………………………………………......i ABSTRACT……………………………………………………………………………......iii TEŞEKKÜR …………………………………………………………………………….....v İÇİNDEKİLER……………………………………………………………………………vii ŞEKİLLER ………………………………………………………………………………..ix ÇİZELGELER……………………………………………………………………………..xi SİMGELER-KISALTMALAR………………………………………………………........xii 1 GİRİŞ 1 2 GENEL BİLGİLER 3 2.1 Fenolik Bileşikler 3 2.2 Gıdalarda Fenolik İçeriği Etkileyen Faktörler 3 2.3 Fenolik Bileşiklerin Sınıflandırılması 4 2.4 Flavonoidler 7 2.4.1 Antosiyaninler 9 2.4.2 Kırmızı lahana 12 2.5 Flavonoidlerin Özütlenmesi 13 2.6 Mikrodalga destekli özütleme (MDÖ) 16 2.6.1 Fenolik bileşiklerin mikrodalga destekli özütlenmesi ile ilgili yapılan çalışmalar ..23 2.7 Yanıt Yüzey Metodu (Response Surface Methodology-RSM) 28 3 MATERYAL VE YÖNTEM 30 3.1 Materyaller 30 3.2 İşlem görmemiş kırmızı lahanalarda fiziko-kimyasal özelliklerin belirlenmesi 31 3.2.1 Suda çözünür kuru madde tayini 31 3.2.2 pH tayini 31 3.2.3 Toplam titrasyon asitliği tayini 31 3.2.4 Toplam monomerik antosiyanin (TMA) miktarı tayini 31 3.2.5 Toplam fenolik madde (TFM) tayini 33 3.2.6 Toplam antioksidan kapasite (TAK) tayini 33 3.3 Kırmızı lahana antosiyaninlerinin özütlenmesi 35 3.3.1 Geleneksel yöntemle özütlenme 36 3.3.2Mikrodalga destekli özütlenme (MDÖ) 36 3.3.3 Mikrodalga destekli özütleme şartlarının optimizasyonu 37 3.4 Antosiyanin özütlerinin analizi 39 3.4.1 Toplam Monomerik Antosiyanin (TMA) tayini 39 3.4.2 Toplam fenolik madde (TFM) tayini 40 3.4.3 Toplam antioksidan kapasite (TAK) tayini 40 3.5 Antosiyanin özütlerinin kompozisyonunun LC-MS ile analizi 42 4 BULGULAR & TARTIŞMA 43 4.1 İşlem Görmemiş Kırmızı Lahanaların Fizikokimyasal Analizleri 43 4.2 Kırmızı Lahana Antosiyaninlerinin Geleneksel Yöntemle Özütlenmesi 44 4.3 Mikrodalga Destekli Özütleme Şartlarının Optimizasyonu 50 4.4 MDÖ ile Elde Edilen Özütlerin LC-MS ile Analizi 68 5 SONUÇLAR………………………………………………………………………...77 KAYNAKLAR 79 EKLER…………………………………………………………………….........................89 ÖZGEÇMİŞ……………………………………………………………………………....115tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectkırmızı lahana (brassica oleracea l.)
dc.subjectantosiyanin
dc.subjectmikrodalga destekli özütleme
dc.subjectyanıt yüzey metodolojisi
dc.titleKırmızı Lahana Antosiyaninlerinin Mikrodalga Ve Konvansiyonel Yöntemler İle Özütlenmesitr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetKırmızı lahana (Brassica oleracea L.) antosiyaninlerinin benzersiz olması ve çok geniş bir pH aralığında renk sergilemesi nedeniyle gıdaların renklendirilmesinde kullanılan, yüksek antioksidan kapasitesinden dolayı sağlığa olumlu etkileri olan bir sebzedir. Çalışmada, kırmızı lahana antosiyaninleri, mikrodalga destekli özütleme (MDÖ) ve konvansiyonel yöntemlerle özütlenmiştir. Kırmızı lahana özütlerinin, toplam monomerik antosiyanin miktarı (TMA), toplam fenolik madde miktarı (TFM) ve toplam antioksidan kapasiteleri (TAKDPPH ve TAKCUPRAC) ölçülmüştür. Yanıt yüzey metodu kullanılarak MDÖ proses şartlarının optimizasyonu yapılmıştır. DAD-LC-MS kullanılarak kırmızı lahanalarda bulunan temel antosiyanin çeşitleri tespit edilmiştir. Konvansiyonel özütleme yönteminde bağımsız değişken olarak özütleme süresi (4 ve 6 saat), özütleme sıcaklığı (40 °C ve 70 °C) ve çözücü tipi (su ve etanol-su (1/1, v/v)) olmak üzere üç parametre seçilmiştir. Elde edilen sonuçlara göre, TMA, TFM, TAKDPPH ve TAKCUPRAC için elde edilen en yüksek değerler, çözücünün etanol-su, sıcaklığın 40 °C’de ve özütlemenin 4 saat sürdüğü koşul olmuştur. Elde edilen değerler sırasıyla 240,69 mg siyanidin/L, 1677,33 mg GAE/L, 66,34 mg DPPH/L, 16,77 mmol TE/L 'dir. TMA, TFM, TAKDPPH ve TAKCUPRAC sonuçlarının en düşük çıktığı koşul ise çözücünün su olduğu, 40 °C sıcaklıkta ve 4 saat süren özütleme koşuludur. Sonuçlar sırasıyla; 125,91 mg siyanidin/L, 1018,52 mg GAE/L, 33,12 mg DPPH/L ve 8,91 mmol TE/L'dir. MDÖ için optimum şartların belirlenmesinde Box-Behnken deney tasarımı kullanılmıştır. Özütleme süresi (X1), katı/çözücü oranı (X2) ve mikrodalga gücü (X3) olarak seçilen bağımsız değişkenlerin, elde edilen özütlerin TMA, TPM, TAKDPPH ve TAKCUPRAC değerlerine olan etkileri yanıt yüzey metodolojisi ile incelenmiştir. Çözücünün etanol/su olduğu MDÖ özütlerinde X1 ve X2 parametreleri kırmızı lahanadaki TMA'yı istatistiksel olarak önemli derecede etkilerken (p≤0.05); gücün (X3) TMA üzerinde anlamlı etkisi bulunmadığı görülmüştür. Çözücü tipinin su olduğu şartlardaki ise X2 ve X3 özütlerdeki TMA miktarı üzerinde istatistiksel olarak önemli ölçüde etkiliyken (p≤0.05); X1’in etkili olmadığı tespit edilmiştir. Çözücünün etanol-su (1/1, v/v) olduğu durumda, RSM optimum şartları, 9,85 dakika, çözünen/çözücü oranı 1/20 ve mikrodalga gücü 595,96 W olarak belirlenmiştir. Bu koşullarda, elde edilen modellere göre, optimum TMA miktarı 438 mg siyanidin/L, optimum TFM miktarı 1143,43 mg GAE/L, optimum TAKCUPRAC miktarı 16,80 mmol TE/L, optimum TAKDPPH miktarı ise 134,82 mg DPPH/L olarak bulunmuştur. Çözücü su iken optimum RSM koşulları; 5 dakika, çözünen/çözücü oranı ve mikrodalga gücü 309,09 W olmuştur. . Bu koşullarda, elde edilen modellere göre, optimum TMA miktarı 131,86 mgsiyanidin/L, optimum TFM miktarı 1952,85 mg GAE/L, optimum TAKCUPRAC miktarı 20,90 mmol TE/L, optimum TAKDPPH miktarı 120,63 mg DPPH/L olarak bulunmuştur. MDÖ'nün daha az çözücü kullanılarak daha kısa sürede konvansiyonel yönteme yakın sonuçlar verdiği gözlenmiştir. DAD-LC-MS ile kırmızı lahanda hakim antosiyaninler tanımlanmış ve siyanidin-3-diglukozit-5-glukozit, siyanidin-3-glukozit-5-glukozit, siyanidin-3-(p-kumarol)-diglukozit-5-glukozit, siyanidin-3-(sinapol)-diglukozit-5-glukozit, siyanidin-3-(ferulol) (ferulol)-diglukozit-5-glukozit, siyanidin-3-(ferulol) (sinapol)-diglukozit-5-glukozit, siyanidin-3-(sinapol) (sinapol)-diglukozit-5-glukozit her iki çözücü tipinde ve her iki özütleme yönteminde gözlemlenen antosiyaninler olmuştur. Etanol-su özütlerinde, su özütlerinden farklı olarak siyanidin-3-O-glukozit pikine rastlanmıştır.tr_TR
dc.contributor.departmentGıda Mühendisliğitr_TR
dc.contributor.authorID10213175tr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2018-10-05T11:20:07Z


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster