Özet
In this study, the effect of the commercial adjunct culture of CR-319 containing
Lactococcus lactis subsp. Lactis and Lactococcus lactis subsp. cremoris on the
microbiological, chemical, biochemical, textural and sensorial properties of the full-fat
ultrafiltrated (UF) white cheese was investigated. UF cheese was manufactured by using
normal starter culture (control cheese) or by the addition of adjunct culture of CR-319 in
addition to starter culture (experimental cheese). Cheese samples were analysed during 120
days of ripening. It was found that addition of adjunct culture influenced all chemical
composition, cheese yield, number of lactic acid bacteria, proteolysis, lipolysis, organic
acid and sugar levels, volatile compositions, textural and sensorial characteristics of the
cheese within different levels.
Biochemical changes were more evident after the 60th day of ripening. Depending on high
aminopeptidase activity of CR-319 commercial adjunct culture, secondary proteolysis was
found at higher level, especially on the 120th days of ripening. However, primary
proteolysis was also affected at experimental cheeses. Those results were supported by
urea-PAGE and RP-HPLC. The total free fatty acid level was also affected by adjunct
addition. But, its effect was limited (P > 0.05). In experimental cheeses, residual lactose
level (~1.54%) was higher than the control cheese while residual galactose level (~0.15%)
was lower. It has been found that the adjunct culture containing UF cheese samples had
higher level of ketones such as diacetyl, 2,3 pentanedione, acetoin than the control cheeses.
Sensorial properties of experimental cheeses were positively affected by adjunct culture
and total acceptability was higher than the control cheeses. The use of adjunct culture
slightly improved flavour intensity and decreased bitterness. Overall, CR-319 adjunct
culture enhanced proteolysis, lipolysis, taste and aroma characteristics which are important
for balanced flavour, whilst bitterness was reduced. It leads to partially much more
creamy-like texture in UF cheeses. But, those effects were limited until the 60th or the 90th
day of ripening.
Künye
[1] McSweeney, P. L. H.; Sousa, M. J., Biochemical pathways for the production of
flavour compounds in cheeses during ripening: A review, Lait, 80, 293-324, 2000.
[2] Walstra, P.; Wouters, J. T. M.; Geurts, T. J., Dairy Science and Technology.
Taylor & Francis Group: USA, p 763, 2006.
[3] Miočinović, J.; Puđa, P.; Radulović, R.; Pavlović, V.; Miloradović, Z.;
Radovanović, M.; D., P., Development of low fat UF cheese technology,
Mljekarstvo, 61, 33-44, 2011.
[4] Akbarian Moghari, A.; Razavi, S. H.; Ehsani, M. R.; Mousavi, M., Development
and critical quality characterization of functional UF-Feta cheese by Incorporating
probiotic bacteria, Journal of Food Processing and Preservation, 39, 599-605,
2015.
[5] Cavanagh, D.; Fitzgerald, G. F.; McAuliffe, O., From field to fermentation: the
origins of Lactococcus lactis and its domestication to the dairy environment, Food
Microbiol, 47, 45-61, 2015.
[6] Sousa, M. J.; Ardö, Y.; McSweeney, P. L. H., Advances in the study of
proteolysis during cheese ripening, International Dairy Journal, 11, 327-345,
2001.
[7] Law, M. H. E. Ultra Filtration (UF) Process development for the production of
Camembert cheese. Massey University, New Zealand, 2010.
[8] Settanni, L.; Moschetti, G., Non-starter lactic acid bacteria used to improve cheese
quality and provide health benefits, Food Microbiol, 27, 691-7, 2010.
[9] Burns, P.; Cuffia, F.; Milesi, M.; Vinderola, G.; Meinardi, C.; Sabbag, N.; Hynes,
E., Technological and probiotic role of adjunct cultures of non-starter lactobacilli
in soft cheeses, Food Microbiol, 30, 45-50, 2012.
[10] Drake, M. A.; Herrett, W.; Boylston, T. D.; Swanson, B. G., Sensory evaluation
of reduced fat cheeses, Journal of Food Science, 60, 898, 1995.
[11] Beresford, T.; Williams, A., The Microbiology of Cheese Ripening. Cheese:
Chemistry, Physics and Microbiology, third (eds: Fox, P. F.; McSweeney, P. L.
H.; Cogan, T. M.; Guinee, T. P., Academic Press: New York, 287-318, 2017.
[12] Ardö, Y., Flavour and texture in low-fat cheese. Microbiology and Biochemistry
of Cheese and Fermented Milk, (eds: Law, B. A. E., Springer US: London, 207-
218, 1997.
[13] El Soda, M., Control and enhancement of flavour in cheese. Microbiology and
Biochemistry of Cheese and Fermented Milk, (eds: Law, B. A. E., Springer US:
London, 219-252, 1997.
[14] El Soda, M.; Madkor, S. A.; Tong, P. S., Adjunct cultures: recent developments
and potential significance to the cheese industry, J Dairy Sci, 83, 609-19, 2000.
[15] Muehlhoff, E.; Bennett, A.; McMahon, D., Milk and Dairy Products in Human
Nutrition. In FAO: Rome, 2013; pp 1-9.
[16] Fox, P. F.; McSweeney, P. L. H., Dairy Chemistry and Biochemistry. Thomson
Science: UK, p 478;1989.
[17] Bulat, T. Utilization of probiotic Enterococcus faecium as adjunct cultures in
white cheese production and its effects on oxidation-reduction potential and
cheese quality. Msc Thesis, Hacettepe University, Turkey, 2011.
[18] Fox, P. F.; McSweeney, P. L. H., Cheese: An Overview. Cheese: Chemistry,
Physics and Microbiology, Third (eds: Fox, P. F.; McSweeney, P. L. H.; Cogan,
T. M.; Guinee, T. P., Academic Press: New York, 1-18, 2017.
[19] Fox, P. F.; Guinee, T. P.; Cogan, T. M.; McSweeney, P. L. H., Fundamentals of
Cheese Science. Aspen Publishers: Gaithersburg, Maryland, p 638;2000.
[20] Anonymous, Hayvancılık Özel Ihtısas Komısyon Raporu, B: 2873 - ÖİK: 723,
Ankara, 2014.
[21] Anonymous, Sekizinci Beş Yıllık Kalkınma Planı Gıda Sanayi Özel İhtisas
Komisyonu, DPT: 2636-OIK: 644, Ankara, 2001.
[22] Wishah, R. Utilization of some adjunct bacteria strains in cheese production in
addition to starter culture and their effects on the cheese properties. Hacettepe
University, Ankara, 2007.
[23] Strathmann, H.; Giorno, L.; Drioli, E., An Introduction to Membrane Science and
Technology. In Technology, M., Ed. Italy, 2006.
[24] Pouliot, Y., Membrane processes in dairy technology - From a simple idea to
worldwide panacea, International Dairy Journal, 18, 735-740, 2008.
[25] Lonsdale, H. K., The growth of membrane technology, Journal of Membrane
Science, 10, 81-181, 1982.
[26] Meares, P., Membrane science and technology. Edited by Y. Osada and T.
Nakagawa'. Marcel Dekker Inc., New York, 1992. pp. vii + 467, ISBN 0-8247-
8694-7, Polymer International, 33, 440-440, 1994.
[27] Steiner, R., Microfiltration and Ultrafiltration - Principles and Applications,
Chemie Ingenieur Technik, 69, 1479-1479, 1997.
[28] Drioli, E.; Romano, M., Progress and New perspectives on integrated membrane
operations for sustainable industrial growth, Industrial & Engineering Chemistry
Research, 40, 1277-1300, 2001.
[29] Bhattacharyya, D.; Butterfield, D. A., New insights into membrane science and
technology: Polymeric and biofunctional membranes. Elsevier: Amsterdam;2003.
[30] Baker, R. W., Membrane Technology. Kirk-Othmer Encyclopedia of Chemical
Technology, second (eds: John Wiley & Sons, Inc.: U.K, 2000.
[31] Strathmann, H., Ion-exchange membrane separation processes / Heiner
Strathmann. Elsevier: Amsterdam;2004.
[32] Marella, C.; Muthukumarappan, K.; Metzger, L. E., Application of membrane
separation technology for developing novel dairy food ingredients, Food
Processing & Technology, 2013.
[33] Schlosser, S., Advanced unit operations in food biotechnology-membrane
filtration. Engineering Aspects of Food Biotechnology, (eds: Teixeira, J. A.;
Vicente, A. A., Taylor & Francis Group: London-New York, 145-182, 2014.
[34] Kumar, P.; Sharma, N.; Ranjan, R.; Kumar, S.; Bhat, Z. F.; Jeong, D. K.,
Perspective of membrane technology in dairy industry: A Review, Asian-
Australasian Journal of Animal Sciences, 26, 1347-1358, 2013.
[35] Mulder, M., Basic Principles of Membrane Technolog. Kluwer Academic
Publishers: Netherlands, p 557;1997.
[36] Rosenberg, M., Current and future applications for membrane processes in the
dairy industry, Trends in Food Science & Technology, 6, 12-19, 1995.
[37] Mistry, V. V., Cheese | Membrane Processing in Cheese Manufacture
Encyclopedia of Dairy Sciences, Second (eds: Fuquay, J. w.; Fox, P. F.;
McSweeney, P. L. H., Academic Press: San Diego, 618-624, 2002.
[38] Mistry, V. V.; Maubios, J. L., Application of Membrane Separation Technology
to Cheese Production. Cheese Chemistry, Physics and Microbiology Third (eds:
Fox, P. F.; McSweeney, P. L. H.; Cogan, T. M.; Guinee, T. P., Academic Press:
New York, 261-286, 2017.
[39] Lo, C. G.; Bastian, E. D., Incorporation of native and denatured whey proteins
into cheese curd for manufacture of reduced fat, Havarti-type Cheese1, J Dairy
Sci, 81, 16-24, 1998.
[40] McSweeney, P. L. H., Ultrafiltration of cheesemilk A2 Cheese Problems Solved,
(eds: Woodhead Publishing: 30-33, 2007.
[41] Kilara, A.; Chandan, R. C., Greek-style yogurt and related products.
Manufacturing Yogurt and Fermented Milk, Second (eds: Chandan, R. C.; Kilara,
A., Wiley-Blackwell: UK, 296-318, 2013.
[42] Crabbe, M. J. C., Rennets: General and Molecular Aspects. Cheese Chemistry,
Physics and Microbiology, Third (eds: Fox, P. F.; McSweeney, P. L. H.; Cogan,
T. M.; Guinee, T. P., Academic Press: New York, 19-46, 2017.
[43] Dejmek, P.; Walstra, P., The Syneresis of Rennet-coagulated Curd. Cheese
Chemistry, Physics and Microbiology, Third (eds: Fox, P. F.; McSweeney, P. L.
H.; Cogan, T. M.; Guinee, T. P., Academic Press: New York, 71-104, 2017.
[44] Huffman, L. M.; Kristoffersen, T., Role of lactose in Cheddar cheese
manufacturing and ripening, Journal of Dairy Science and Technology, 19, 151-
162, 1984.
[45] O'Keeffe, R. B.; Fox, P. F.; Daly, C., Proteolysis in Cheddar cheese: influence of
the rate of acid production during manufacture, Journal of Dairy Research, 42,
111-122, 1975.
[46] McSweeney, P. L. H., Biochemistry of Cheese Ripening, International Journal of
Dairy Technology, 57, 127-144, 2004.
[47] Guinee, T. P.; Fox, P. F., Salt in Cheese: Physical, Chemical and Biological
Aspects. Cheese Chemistry, Physics and Microbiology, Third (eds: Fox, P. F.;
McSweeney, P. L. H.; Cogan, T. M.; Guinee, T. P., Academic Press: New York,
207-260, 2017.
[48] Parente, E.; Cogan, T. M., Starter Cultures: General Aspects. Cheese Chemistry,
Physics and Microbiology, Third (eds: Fox, P. F.; McSweeney, P. L. H.; Cogan,
T. M.; Guinee, T. P., Academic Press: New York, 123-148, 2017.
[49] Turner, K. W.; Thomas, T. D., Lactose fermentation in Cheddar cheese and the
effect of salt, New Zealand Journal of Dairy Science and Technology, 15, 265-
276, 1980.
[50] McSweeney, P. L. H.; Fox, P. F., Metabolism of Residual Lactose and of Lactate
and Citrate. Cheese Chemistry, Physics and Microbiology, Third (eds: Fox, P. F.;
McSweeney, P. L. H.; Cogan, T. M.; Guinee, T. P., Academic Press: New York,
361-372, 2017.
[51] Bouzas, J.; Kantt, C. A.; Bodyfelt, F.; Torres, J. A., Simultaneous determination
of sugars and organic acids in Cheddar cheese by high-performance liquid
chromatography, Journal of Food Science, 56, 276–278, 1991.
[52] El Soda, M.; Law, J.; Tsakalidou, E.; Kalantzopoulos, G., Lipolytic activity of
cheese related microorganisms and its impact on cheese flavour. Developments in
Food Science, (eds: George, C., Elsevier: 1823-1847, 1995.
[53] Collins, Y. F.; McSweeney, P. L. H.; Wilkinson, M. G., Lipolysis and free fatty
acid catabolism in cheese: a review of current knowledge, International Dairy
Journal, 13, 841-866, 2003.
[54] Walstra, P.; Jenness, R.; Badings, H. T., Dairy chemistry and physics. Wiley;
1984.
[55] Fox, P. F.; Uniacke-Lowe, T.; McSweeney, P. L. H.; O’Mahony, J. A., Dairy
Chemistry and Biochemistry. Second ed.; Springer: Switzerland, p 569;2015.
[56] Sørhaug, T.; Ordal, Z. J., Cell-Bound Lipase and Esterase of Brevibacterium
linens, Applied Microbiology, 27, 607-608, 1974.
[57] Morris, H. A.; Jezeski, J. J., The action of microorganisms on fats. II. Some
characteristics of the lipase system of Penicillium Roqueforti, J Dairy Sci, 36,
1285-1298, 1953.
[58] Lamberet, G.; Lenoir, J., Les caractères du système lipolytique de l'espèce
Penicillium caseicolum. Nature du système, Lait, 56, 119-134, 1976.
[59] Kondyli, E.; Katsiari, M. C.; Masouras, T.; Voutsinas, L. P., Free fatty acids and
volatile compounds of low-fat Feta-type cheese made with a commercial adjunct
culture, Food Chemistry, 79, 199-205, 2002.
[60] Molimard, P.; Spinnler, H. E., Review: Compounds involved in the flavor of
surface mold-ripened Cheeses: Origins and Properties, J Dairy Sci, 79, 169-184,
[61] Upadhyay, V. K.; McSweeney, P. L. H.; Magboul, A. A. A.; Fox, P. F.,
Proteolysis in Cheese during Ripening. Cheese Chemistry, Physics and
Microbiology, Third (eds: Fox, P. F.; McSweeney, P. L. H.; Cogan, T. M.;
Guinee, T. P., Academic Press: New York, 391-434, 2017.
[62] McSweeney, P. L. H.; Fox, P. F.; Olson, N. F., Proteolysis of bovine caseins by
cathepsin D: Preliminary observations and comparison with chymosin,
International Dairy Journal, 5, 321–336, 1995.
[63] Visser, F. M. W.; Groot-Mostert, A. E. A., Contribution of enzymes from rennet,
starter bacteria and milk to proteolysis and flavour development in Gouda cheese.
4. Protein breakdown: a gel electrophoretic study, Netherland Milk Dairy Journal,
31, 247-264, 1977.
[64] Considine, T.; Healy, A.; Kelly, A. L.; McSweeney, P. L. H., Proteolytic
specificity of elastase on bovine β-casein, Food Chemistry, 66, 463-470, 1999.
[65] Verdi, R. J.; Barbano, D. M., Effect of coagulants, somatic cell enzymes, and
extracellular bacterial enzymes on plasminogen activation, J Dairy Sci, 74, 772-
782, 1991.
[66] Fox, P. F.; McSweeney, P. L. H., Proteolysis in cheese during ripening, Food
Reviews International, 12, 457-509, 1996.
[67] Yvon, M.; Rijnen, L., Cheese flavour formation by amino acid catabolism,
International Dairy Journal, 11, 185-201, 2001.
[68] Chamba, J.-F.; Irlinger, F., Secondary and Adjunct Cultures. Cheese Chemistry,
Physics and Microbiology, Third (eds: Fox, P. F.; McSweeney, P. L. H.; Cogan,
T. M.; Guinee, T. P., Academic Press: New York, 191-206, 2017.
[68] Rattray, F. P.; Eppert, I. Cheese | Secondary Cultures. Encyclopedia of Dairy
Sciences, Second (eds: Fuquay, J. w.; Fox, P. F.; McSweeney, P. L. H., Academic
Press: San Diego, USA, 567-573, 2011.
[69] Montel, M.C.; Buchin, S.; Mallet, A.; Delbes-Paus, C.; Vuitton, D. A.;
Desmasures, N.; Berthier, F., Traditional cheeses: Rich and diverse microbiota
with associated benefits, International Journal of Food Microbiology, 177, 136-
154, 2014.
[70] Gatti, M.; Bottari, B.; Lazzi, C.; Neviani, E.; Mucchetti, G., Invited review:
Microbial evolution in raw-milk, long-ripened cheeses produced using undefined
natural whey starters, J Dairy Sci, 97, 573-591, 2014.
[71] Bokulich, N. A.; Mills, D. A., Facility-specific "house" microbiome drives
microbial landscapes of artisan cheesemaking plants, Appl Environ Microbiol, 79,
5214-23, 2013.
[72] Folkertsma, B.; Fox, P. F.; McSweeney, P. L. H., Accelerated ripening of Cheddar
cheese at elevated temperatures, International Dairy Journal, 6, 1117-1134, 1996.
[73] Fitzsimons, N. A.; Cogan, T. M.; Condon, S.; Beresford, T., Spatial and temporal
distribution of non-starter lactic acid bacteria in Cheddar cheese, J Appl
Microbiol, 90, 600-8, 2001.
[74] Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Mancini, L.; Fox, P. F., Pros and
cons for using non-starter lactic acid bacteria (NSLAB) as secondary/adjunct
starters for cheese ripening, Trends in Food Science & Technology, 45, 167-178,
2015.
[75] Lynch, C. M.; McSweeney, P. L. H.; Fox, P., F.; Cogan, T. M.; Drinan, F. D.,
Contribution of starter lactococci and non-starter lactobacilli to proteolysis in
Cheddar cheese with a controlled microflora, Lait, 77, 441-459, 1997.
[76] Williams, A. G.; Banks, J. M., Proteolytic and other hydrolytic enzyme activities
in non-starter lactic acid bacteria (NSLAB) isolated from cheddar cheese
manufactured in the United Kingdom, International Dairy Journal, 7, 763-774,
1997.
[77] Crow, V.; Curry, B.; Hayes, M., The ecology of non-starter lactic acid bacteria
(NSLAB) and their use as adjuncts in New Zealand Cheddar, International Dairy
Journal, 11, 275-283, 2001.
[78] Perry, K. D.; McGillivray, W. A., The manufacture of ‘normal’ and ‘starter-free’
Cheddar cheese under controlled bacteriological conditions, Journal of Dairy
Research, 31, 155–165, 1964.
[79] Reiter, B.; Fryer, T. F.; Pickering, A.; Chapman, H. R.; Lawrence, R. C.; Sharpe,
M. E., The effect of the microbial flora on the flavour and free fatty acid
composition of cheddar cheese, Journal of Dairy Research, 34, 257–272, 1967.
[80] Ristagno, D. Evaluation of microbial adjuncts and their effect on the ripening of
Cheddar cheese. PhD Thesis, University College Cork, Irland, 2013.
[81] Katsiari, M. C.; Voutsinas, L. P.; Kondyli, E.; Alichanidis, E., Flavour
enhancement of low-fat Feta-type cheese using a commercial adjunct culture,
Food Chemistry, 79, 193-198, 2002.
[82] Tungjaroenchai, W.; White, C. H.; Holmes, W. E.; Drake, M. A., Influence of
adjunct cultures on volatile free fatty acids in reduced-fat Edam cheeses, J Dairy
Sci, 87, 3224-34, 2004.
[83] Di Cagno, R.; De Pasquale, I.; De Angelis, M.; Buchin, S.; Rizzello, C. G.;
Gobbetti, M., Use of microparticulated whey protein concentrate,
exopolysaccharide-producing Streptococcus thermophilus, and adjunct cultures
for making low-fat Italian Caciotta-type cheese, J Dairy Sci, 97, 72-84, 2014.
[84] Bhowmik, T.; Riesteren, B.; Boekel, M. A. J. S. v.; Marth, E. H., Characteristics
of low-fat Cheddar cheese made with added Micrococcus or Pediococcus species,
Milchwissenschaft, 45, 230-235, 1990.
[85] L., S. J.; LENOIR, J.; Schmidt, M., Contribution à l'étude de la flore levure du
fromage de Camembert (II), Lait, 60, 272-282, 1980.
[86] Lucia, V.; Daniela, B.; Rosalba, L., Use of Fourier transform infrared
spectroscopy to evaluate the proteolytic activity of Yarrowia lipolytica and its
contribution to cheese ripening, International Journal of Food Microbiology, 69,
113-123, 2001.
[87] Mehlomakulu, N. N. Yeast as Adjunct Starter Cultures in Cheese Making.
University of the Free State, Master degree thesis, Bloemfontein, 2011.
[88] Crow, V. L.; Coolbear, T.; Gopal, P. K.; Martley, F. G.; McKay, L. L.; Riepe, H.,
The role of autolysis of lactic acid bacteria in the ripening of cheese, International
Dairy Journal, 5, 855-875, 1995.
[89] Fox, P. F.; Wallace, J. M.; Morgan, S.; Lynch, C. M.; Niland, E. J.; Tobin, J.,
Acceleration of cheese ripening, Antonie Van Leeuwenhoek, 70, 271-97, 1996.
[90] O'Donovan, C. M.; Wilkinson, M. G.; Guinee, T. P.; Fox, P. F., An investigation
of the autolytic properties of three lactococcal strains during cheese ripening,
International Dairy Journal, 6, 1149-1165, 1996.
[91] Collins, Y. F.; McSweeney, P. L.; Wilkinson, M. G., Evidence of a relationship
between autolysis of starter bacteria and lipolysis in cheddar cheese during
ripening, J Dairy Res, 70, 105-13, 2003.
[92] Facklam, R.; Elliott, J. A., Identification, classification, and clinical relevance of
catalase-negative, gram-positive cocci, excluding the streptococci and
enterococci, Clin Microbiol Rev, 8, 479-95, 1995.
[93] Samaržija, D.; Antunac, N.; Havranek, J. L., Taxonomy, physiology and growth
of Lactococcus lactis: a review, Mljekarstvo, 51, 35-48, 2001.
[94] Teuber, M.; Geis, A., The Genus Lactococcus. The Prokaryotes: Volume 4:
Bacteria: Firmicutes, Cyanobacteria, (eds: Dworkin, M.; Falkow, S.; Rosenberg,
E.; Schleifer, K.; Stackebrandt, E., Springer US: New York, NY, 205-228, 2006.
[95] Bourdichon, F.; Casaregola, S.; Farrokh, C.; Frisvad, J. C.; Gerds, M. L.;
Hammes, W. P.; Harnett, J.; Huys, G.; Laulund, S.; Ouwehand, A.; Powell, I. B.;
Prajapati, J. B.; Seto, Y.; Ter Schure, E.; Van Boven, A.; Vankerckhoven, V.;
Zgoda, A.; Tuijtelaars, S.; Hansen, E. B., Food fermentations: Microorganisms
with technological beneficial use, International Journal of Food Microbiology,
154, 87-97, 2012.
[96] FDA, Generally Recognised as Safe (GRAS) Notifications. In 2010.
[97] Wouters, J. T. M.; Ayad, E. H. E.; Hugenholtz, J.; Smit, G., Microbes from raw
milk for fermented dairy products, International Dairy Journal, 12, 91-109, 2002.
[98] Ross, R. P.; Stanton, C.; Hill, C.; F. Fitzgerald, G.; Coffey, A., Novel cultures for
cheese improvement, Trends in Food Science & Technology, 11, 96-104, 2000.
[99] Terzaghi, B. E.; Sandine, W. E., Improved medium for Lactic Streptococci and
their bacteriophages, Applied Microbiology, 29, 807-813, 1975.
[100] Harrigan, W.F. Laboratory Methods in Food Microbiology. Third Ed. Academic
press, San Diego, USA, 1998.
[101] Kasımoğlu, A.; Göncüoğlu, M.; Akgün, S., Probiotic white cheese with
Lactobacillus acidophilus, International Dairy Journal, 14, 1067-1073, 2004.
[102] Bönisch, M. P.; Heidebach, T. C.; Kulozik, U., Influence of transglutaminase
protein cross-linking on the rennet coagulation of casein, Food Hydrocolloids, 22,
288-297, 2008.
[103] Aaltonen, T.; Huumonen, I.; Myllärinen, P., Controlled transglutaminase
treatment in Edam cheese-making, International Dairy Journal, 38, 179-182,
2014.
[104] IDF, Determination of the total solids content. Cheese and processed cheese,
Edition (eds: Editor, International Dairy Federation: Brussels, Belgium, 1982.
[105] Ardö, Y.; Polychroniadou, A., Laboratory manual for chemical analysis of
cheese. Publications Office: Luxembourg;1999.
[106] Fox, P. F., Potentiometric determination of salt in cheese, J Dairy Sci, 46, 744-
745, 1963
[107] (TS-591), T. S. E., Beyaz peynir standardı. Edition (eds: Editor, Turkey, 2013.
[108] IDF, Milk and milk products. Determination of nitrogen content and crude protein
calculation — Kjeldahl principle, Edition (eds: Editor, International Dairy
Federation: Brussels, Belgium, 1986.
[109] Kuchroo, C. N.; Fox, P. F., Fractionation of the water soluble nitrogen from
cheddar cheese: chemical methods, Milchwissenschaft, 37, 76-88, 1982.
[110] Topçu, A.; Saldamli, I., Proteolytical, chemical, textural and sensorial changes
during the ripening of Turkish white cheese made of pasteurized cows' milk,
International Journal of Food Properties, 9, 665-678, 2006.
[111] Andrews, A. T., Proteinases in normal bovine milk and their action on caseins,
Journal of Dairy Research, 50, 45-55, 1983.
[112] Shalabi, S. I.; Fox, P. F., Electrophoretic analysis of cheese: Comparison of
methods, Irish Journal of Food Science and Technology, 11, 135-151, 1987.
[113] Blakesley, R. W.; Boezi, J. A., A new staining technique for proteins in
polyacrylamide gels using Coomassie brilliant blue G250, Analytical
Biochemistry, 82, 580-582, 1977.
[114] De Jong, C.; Badings, H. T., Determination of free fatty acids in milk and cheese
procedures for extraction, clean up, and capillary gas chromatographic analysis,
Journal of High Resolution Chromatography, 13, 94-98, 1990.
[115] Manolaki, P.; Katsiari, M. C.; Alichanidis, E., Effect of a commercial adjunct
culture on organic acid contents of low-fat Feta-type cheese, Food Chemistry, 98,
658-663, 2006.
[116] Califano, A. N.; Bevilacqua, A. E., Multivariate analysis of the organic acids
content of Gouda type cheese during ripening, Journal of Food Composition and
Analysis, 13, 949-960, 2000.
[117] Zeppa, G.; Conterno, L.; Gerbi, V., Determination of organic acids, sugars,
diacetyl, and acetoin in cheese by high-performance liquid chromatography, J
Agric Food Chem, 49, 2722-6, 2001.
[118] Delgado, F. J.; González-Crespo, J.; Cava, R.; García-Parra, J.; Ramírez, R.,
Characterisation by SPME–GC–MS of the volatile profile of a Spanish soft
cheese P.D.O. Torta del Casar during ripening, Food Chemistry, 118, 182-189,
2010.
[119] Özer, B.; Kirmaci, H. A.; Hayaloglu, A. A.; Akçelik, M.; Akkoç, N., The effects
of incorporating wild-type strains of Lactococcus lactis into Turkish white-brined
cheese (Beyaz peynir) on the fatty acid and volatile content, International Journal
of Dairy Technology, 64, 494-501, 2011.
[120] Trinh, K.; Glasgowe, S., On the texture profile analysis test. In Chemeca 2012:
Quality of life through chemical engineering, Barton, A.C.T.: Engineers Australia:
Wellington, New Zealand, 2012.
[121] Tunick, M. H., Rheology of dairy foods that gel, stretch, and fracture, J Dairy Sci,
83, 1892-8, 2000.
[122] Jacob, H. E., Redox Potential. Methods in Microbiology, (eds: Norris, J. R.;
Ribbons, D. W., Academic Press: London, 91-123, 1970.
[123] Enstitüsü, T. S., Çiğ süt standardı (TS-1018). Cow milk- Raw, Edition (eds:
Editor, Türk Standartları Enstitüsü: Ankara, 14, 1994.
[124] Thage, B. V.; Broe, M. L.; Petersen, M. H.; Petersen, M. A.; Bennedsen, M.;
Ardö, Y., Aroma development in semi-hard reduced-fat cheese inoculated with
Lactobacillus paracasei strains with different aminotransferase profiles,
International Dairy Journal, 15, 795-805, 2005.
[125] Karami, M.; Ehsani, M. R.; Mousavi, S. M.; Rezaei, K.; Safari, M., Changes in
the rheological properties of Iranian UF-Feta cheese during ripening, Food
Chemistry, 112, 539-544, 2009.
[126] Soltani, M.; Guzeler, N.; Hayaloglu, A. A., The influence of salt concentration on
the chemical, ripening and sensory characteristics of Iranian white cheese
manufactured by UF-Treated milk, J Dairy Res, 82, 365-74, 2015.
[127] Awad, S., Texture and flavour development in Ras cheese made from raw and
pasteurised milk, Food Chemistry, 97, 394-400, 2006.
[128] Topçu, A. Detection of Bitter Peptides Cause Bitterness in Kasar and White
Cheese and The Investigation of Possible Effects of Storage Condition and Starter
Microorganism on Bitterness, Ph.D. Thesis, Hacettepe University, Turkey, 2004.
[129] Waagner Nielsen, E., North European varieties of cheese. Cheese, chemistry,
physics and microbiology (eds: Fox, P. F., Chapman and Hall: London, 253, 1993.
[130] Poveda, J. M.; Nieto-Arribas, P.; Seseña, S.; Chicón, R.; Castro, L.; Palop, L.;
Cabezas, L., Volatile composition and improvement of the aroma of industrial
Manchego cheese by using Lactobacillus paracasei subsp. paracasei as adjunct
and other autochthonous strains as starters, European Food Research and
Technology, 238, 485-494, 2014.
[131] Kumar, S.; Kanawjia, S. K.; Kumar, S., Incorporation of Lactobacillus adjuncts
culture to improve the quality of Feta-type cheese made using buffalo milk, J
Food Sci Technol, 52, 5021-9, 2015.
[132] Sato, R.; Vieira, A.; Camisa, J.; Vianna, P.; De Rensis, C.; , Assessment of
proteolysis and sensory characteristics of Prato cheese with adjunct culture,
SEMINA-CIENCIAS AGRARIAS, 33, 3143-3151, 2012.
[133] Michaelidou, A.; Katsiari, M. C.; Kondyli, E.; Voutsinas, L. P.; Alichanidis, E.,
Effect of a commercial adjunct culture on proteolysis in low-fat Feta-type cheese,
International Dairy Journal, 13, 179-189, 2003.
[134] Tornvall, U., Pinpointing oxidative modifications in proteins-recent advances in
analytical methods, ANALYTICAL METHODS, 2, 1638-1650, 2010.
[135] Ardö, Y., Evaluating proteolysis by analysing the N content of cheese fractions,
Bulletin of the IDF, 4-9, 1999.
[136] Lynch, C. M.; Muir, D. D.; Banks, J. M.; McSweeney, P. L. H.; Fox, P. F.,
Influence of adjunct cultures of Lactobacillus paracasei ssp. paracasei or
Lactobacillus plantarum on Cheddar cheese ripening, J Dairy Sci, 82, 1618-1628,
1999.
[137] Ong, L.; Henriksson, A.; Shah, N. P., Development of probiotic Cheddar cheese
containing Lactobacillus acidophilus, Lb. casei, Lb. paracasei and
Bifidobacterium spp. and the influence of these bacteria on proteolytic patterns
and production of organic acid, International Dairy Journal, 16, 446-456, 2006.
[138] Oneca, M.; Ortigosa, M.; Irigoyen, A.; Torre, P., Proteolytic activity of some
Lactobacillus paracasei strains in a model ovine-milk curd system: Determination
of free amino acids by RP-HPLC, Food Chemistry, 100, 1602-1610, 2007.
[139] Hill, R. D.; Lahav, E.; Givol, D. A., Rennin sensitive bond in alpha-s1 B-casein
Journal of Dairy Research, 41, 1974.
[140] McSweeney, P. L.; Olson, N. F.; Fox, P. F.; Healy, A.; Hojrup, P., Proteolytic
specificity of chymosin on bovine alpha s1-casein, J Dairy Res, 60, 401-12, 1993.
89
[141] Hayaloglu, A. A.; Guven, M.; Fox, P. F.; McSweeney, P. L., Influence of starters
on chemical, biochemical, and sensory changes in Turkish White-brined cheese
during ripening, J Dairy Sci, 88, 3460-74, 2005.
[142] Singh, T. K.; Gripon, J. C.; Fox, P. F., Chromatographic analysis and
identification of peptides in cheese, Bulletin of the IDF, 17-23, 1999.
[143] Bulat, T. The Effect of Oxidation-Reduction Potential on Ripening of UF White
Cheese. Ph.D. Thesis, Hacettepe, Turkey, 2017.
[144] Lopez, C.; Maillard, M. B.; Briard-Bion, V.; Camier, B.; Hannon, J. A., Lipolysis
during ripening of Emmental cheese considering organization of fat and
preferential localization of bacteria, J Agric Food Chem, 54, 5855-67, 2006.
[145] Kirmaci, H. A., Effect of wild strains used as starter cultures on free fatty acid
profile of urfa cheese. In Polish Journal of Food and Nutrition Sciences, 2016;
Vol. 66, p 303.
[146] Mallatou, H.; Pappa, E.; Massouras, T., Changes in free fatty acids during
ripening of Teleme cheese made with ewes’, goats’, cows’ or a mixture of ewes’
and goats’ milk, International Dairy Journal, 13, 211-219, 2003.
[147] Delgado, F. J.; González-C.; Ladero, L.; Cava, R.; Ramírez, R., Free fatty acids
and oxidative changes of a Spanish soft cheese (PDO ‘Torta del Casar’) during
ripening, International Journal of Food Science & Technology, 44, 1721-1728,
2009.
[148] Upreti, P.; McKay, L. L.; Metzger, L. E., Influence of calcium and phosphorus,
lactose, and salt-to-moisture ratio on Cheddar cheese quality: changes in residual
sugars and water-soluble organic acids during ripening, J Dairy Sci, 89, 429-43,
2006.
[149] Abd El-Salam, M. H.; Alichanidis, E., Cheese varieties ripened in brine. Cheese:
chemistry, physics and microbiology, (eds: Fox, P. F.; McSweeney, P. L.; Cogan,
T. M.; Guinee, T. P., Elsevier: Amsterdam, 227–249, 2004.
[150] Smit, G.; Smit, B. A.; Engels, W. J., Flavour formation by lactic acid bacteria and
biochemical flavour profiling of cheese products, FEMS Microbiol Rev, 29, 591-
610, 2005.
[151] Quere, J.-L. L., Cheese Flavor. Enyclopedia of Dairy Sciences Second (eds:
Fuquay, J. w.; Fox, P. F.; McSweeney, P. L., Elsevier: 675-684, 2011.
[152] Tavaria, F. K.; Silva Ferreira, A. C.; Malcata, F. X., Volatile free fatty acids as
ripening indicators for Serra da Estrela cheese, J Dairy Sci, 87, 4064-72, 2004.
[153] Liu, S. Q.; Holland, R.; Crow, V. L., Esters and their biosynthesis in fermented
dairy products: a review, International Dairy Journal, 14, 923-945, 2004.
[154] Engels, W. J. M.; Alting, A. C.; Visser, S., Isolation and comparative
characterization of flavour components of different cheese types, Netherlands
Milk and Dairy Journal, 48, 127-140, 1994.
[155] Garde, S.; Ávila, M.; Fernández-García, E.; Medina, M.; Nuñez, M., Volatile
compounds and aroma of Hispánico cheese manufactured using lacticin 481-
producing Lactococcus lactis subsp. lactis INIA 639 as an adjunct culture,
International Dairy Journal, 17, 717-726, 2007.
[156] Molimard, P.; Spinnler, H. E., Review: Compounds involved in the flavor of
surface mold-ripened Cheeses: Origins and properties, J Dairy Sci, 79, 169-184,
1996.
[157] Soltani, M.; Sahingil, D.; Gokce, Y.; Hayaloglu, A. A., Changes in volatile
composition and sensory properties of Iranian ultrafiltered white cheese as
affected by blends of Rhizomucor miehei protease or camel chymosin, J Dairy
Sci, 99, 7744-7754, 2016.
[158] Lawrence, R. C.; Creamer, L. K.; Gilles, J., Texture development during Cheese
ripening, J Dairy Sci, 70, 1748-1760, 1987.
[159] Beal, P.; Mittal, G. S., Vibration and compression responses of Cheddar cheese at
different fat content and Age, Milchwissenschaft, 55, 139-142, 2000.
[160] Bachmann, H. P., Cheese analogues: a review, International Dairy Journal, 11,
505-515, 2001.
[161] Gunasekaran, S.; Mehmet Ak, M., Cheese Rheology and Texture. CRC
Press;2002.
[162] Sahingil, D.; Hayaloglu, A. A.; Simsek, O.; Ozer, B., Changes in volatile
composition, proteolysis and textural and sensory properties of white-brined
cheese: effects of ripening temperature and adjunct culture, Dairy Science &
Technology, 94, 603-623, 2014.
[163] Dimitreli, G.; Thomareis, A. S., Texture evaluation of block-type processed
cheese as a function of chemical composition and in relation to its apparent
viscosity, Journal of Food Engineering, 79, 1364-1373, 2007.